Newer
Older
casic-smartcity-well-front / static / Cesium / Core / Cartesian4.js
[wangxitong] on 8 Jul 2021 28 KB mars3d总览
import Check from "./Check.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import CesiumMath from "./Math.js";

/**
 * A 4D Cartesian point.
 * @alias Cartesian4
 * @constructor
 *
 * @param {Number} [x=0.0] The X component.
 * @param {Number} [y=0.0] The Y component.
 * @param {Number} [z=0.0] The Z component.
 * @param {Number} [w=0.0] The W component.
 *
 * @see Cartesian2
 * @see Cartesian3
 * @see Packable
 */
function Cartesian4(x, y, z, w) {
  /**
   * The X component.
   * @type {Number}
   * @default 0.0
   */
  this.x = defaultValue(x, 0.0);

  /**
   * The Y component.
   * @type {Number}
   * @default 0.0
   */
  this.y = defaultValue(y, 0.0);

  /**
   * The Z component.
   * @type {Number}
   * @default 0.0
   */
  this.z = defaultValue(z, 0.0);

  /**
   * The W component.
   * @type {Number}
   * @default 0.0
   */
  this.w = defaultValue(w, 0.0);
}

/**
 * Creates a Cartesian4 instance from x, y, z and w coordinates.
 *
 * @param {Number} x The x coordinate.
 * @param {Number} y The y coordinate.
 * @param {Number} z The z coordinate.
 * @param {Number} w The w coordinate.
 * @param {Cartesian4} [result] The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
 */
Cartesian4.fromElements = function (x, y, z, w, result) {
  if (!defined(result)) {
    return new Cartesian4(x, y, z, w);
  }

  result.x = x;
  result.y = y;
  result.z = z;
  result.w = w;
  return result;
};

/**
 * Creates a Cartesian4 instance from a {@link Color}. <code>red</code>, <code>green</code>, <code>blue</code>,
 * and <code>alpha</code> map to <code>x</code>, <code>y</code>, <code>z</code>, and <code>w</code>, respectively.
 *
 * @param {Color} color The source color.
 * @param {Cartesian4} [result] The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
 */
Cartesian4.fromColor = function (color, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("color", color);
  //>>includeEnd('debug');
  if (!defined(result)) {
    return new Cartesian4(color.red, color.green, color.blue, color.alpha);
  }

  result.x = color.red;
  result.y = color.green;
  result.z = color.blue;
  result.w = color.alpha;
  return result;
};

/**
 * Duplicates a Cartesian4 instance.
 *
 * @param {Cartesian4} cartesian The Cartesian to duplicate.
 * @param {Cartesian4} [result] The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. (Returns undefined if cartesian is undefined)
 */
Cartesian4.clone = function (cartesian, result) {
  if (!defined(cartesian)) {
    return undefined;
  }

  if (!defined(result)) {
    return new Cartesian4(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
  }

  result.x = cartesian.x;
  result.y = cartesian.y;
  result.z = cartesian.z;
  result.w = cartesian.w;
  return result;
};

/**
 * The number of elements used to pack the object into an array.
 * @type {Number}
 */
Cartesian4.packedLength = 4;

/**
 * Stores the provided instance into the provided array.
 *
 * @param {Cartesian4} value The value to pack.
 * @param {Number[]} array The array to pack into.
 * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
 *
 * @returns {Number[]} The array that was packed into
 */
Cartesian4.pack = function (value, array, startingIndex) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("value", value);
  Check.defined("array", array);
  //>>includeEnd('debug');

  startingIndex = defaultValue(startingIndex, 0);

  array[startingIndex++] = value.x;
  array[startingIndex++] = value.y;
  array[startingIndex++] = value.z;
  array[startingIndex] = value.w;

  return array;
};

/**
 * Retrieves an instance from a packed array.
 *
 * @param {Number[]} array The packed array.
 * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
 * @param {Cartesian4} [result] The object into which to store the result.
 * @returns {Cartesian4}  The modified result parameter or a new Cartesian4 instance if one was not provided.
 */
Cartesian4.unpack = function (array, startingIndex, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.defined("array", array);
  //>>includeEnd('debug');

  startingIndex = defaultValue(startingIndex, 0);

  if (!defined(result)) {
    result = new Cartesian4();
  }
  result.x = array[startingIndex++];
  result.y = array[startingIndex++];
  result.z = array[startingIndex++];
  result.w = array[startingIndex];
  return result;
};

/**
     * Flattens an array of Cartesian4s into and array of components.
     *
     * @param {Cartesian4[]} array The array of cartesians to pack.
     * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 4 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 4) elements.

     * @returns {Number[]} The packed array.
     */
Cartesian4.packArray = function (array, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.defined("array", array);
  //>>includeEnd('debug');

  var length = array.length;
  var resultLength = length * 4;
  if (!defined(result)) {
    result = new Array(resultLength);
  } else if (!Array.isArray(result) && result.length !== resultLength) {
    throw new DeveloperError(
      "If result is a typed array, it must have exactly array.length * 4 elements"
    );
  } else if (result.length !== resultLength) {
    result.length = resultLength;
  }

  for (var i = 0; i < length; ++i) {
    Cartesian4.pack(array[i], result, i * 4);
  }
  return result;
};

/**
 * Unpacks an array of cartesian components into and array of Cartesian4s.
 *
 * @param {Number[]} array The array of components to unpack.
 * @param {Cartesian4[]} [result] The array onto which to store the result.
 * @returns {Cartesian4[]} The unpacked array.
 */
Cartesian4.unpackArray = function (array, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.defined("array", array);
  Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 4);
  if (array.length % 4 !== 0) {
    throw new DeveloperError("array length must be a multiple of 4.");
  }
  //>>includeEnd('debug');

  var length = array.length;
  if (!defined(result)) {
    result = new Array(length / 4);
  } else {
    result.length = length / 4;
  }

  for (var i = 0; i < length; i += 4) {
    var index = i / 4;
    result[index] = Cartesian4.unpack(array, i, result[index]);
  }
  return result;
};

/**
 * Creates a Cartesian4 from four consecutive elements in an array.
 * @function
 *
 * @param {Number[]} array The array whose four consecutive elements correspond to the x, y, z, and w components, respectively.
 * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
 * @param {Cartesian4} [result] The object onto which to store the result.
 * @returns {Cartesian4}  The modified result parameter or a new Cartesian4 instance if one was not provided.
 *
 * @example
 * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0)
 * var v = [1.0, 2.0, 3.0, 4.0];
 * var p = Cesium.Cartesian4.fromArray(v);
 *
 * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) using an offset into an array
 * var v2 = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0];
 * var p2 = Cesium.Cartesian4.fromArray(v2, 2);
 */
Cartesian4.fromArray = Cartesian4.unpack;

/**
 * Computes the value of the maximum component for the supplied Cartesian.
 *
 * @param {Cartesian4} cartesian The cartesian to use.
 * @returns {Number} The value of the maximum component.
 */
Cartesian4.maximumComponent = function (cartesian) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("cartesian", cartesian);
  //>>includeEnd('debug');

  return Math.max(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
};

/**
 * Computes the value of the minimum component for the supplied Cartesian.
 *
 * @param {Cartesian4} cartesian The cartesian to use.
 * @returns {Number} The value of the minimum component.
 */
Cartesian4.minimumComponent = function (cartesian) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("cartesian", cartesian);
  //>>includeEnd('debug');

  return Math.min(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
};

/**
 * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
 *
 * @param {Cartesian4} first A cartesian to compare.
 * @param {Cartesian4} second A cartesian to compare.
 * @param {Cartesian4} result The object into which to store the result.
 * @returns {Cartesian4} A cartesian with the minimum components.
 */
Cartesian4.minimumByComponent = function (first, second, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("first", first);
  Check.typeOf.object("second", second);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = Math.min(first.x, second.x);
  result.y = Math.min(first.y, second.y);
  result.z = Math.min(first.z, second.z);
  result.w = Math.min(first.w, second.w);

  return result;
};

/**
 * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
 *
 * @param {Cartesian4} first A cartesian to compare.
 * @param {Cartesian4} second A cartesian to compare.
 * @param {Cartesian4} result The object into which to store the result.
 * @returns {Cartesian4} A cartesian with the maximum components.
 */
Cartesian4.maximumByComponent = function (first, second, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("first", first);
  Check.typeOf.object("second", second);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = Math.max(first.x, second.x);
  result.y = Math.max(first.y, second.y);
  result.z = Math.max(first.z, second.z);
  result.w = Math.max(first.w, second.w);

  return result;
};

/**
 * Computes the provided Cartesian's squared magnitude.
 *
 * @param {Cartesian4} cartesian The Cartesian instance whose squared magnitude is to be computed.
 * @returns {Number} The squared magnitude.
 */
Cartesian4.magnitudeSquared = function (cartesian) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("cartesian", cartesian);
  //>>includeEnd('debug');

  return (
    cartesian.x * cartesian.x +
    cartesian.y * cartesian.y +
    cartesian.z * cartesian.z +
    cartesian.w * cartesian.w
  );
};

/**
 * Computes the Cartesian's magnitude (length).
 *
 * @param {Cartesian4} cartesian The Cartesian instance whose magnitude is to be computed.
 * @returns {Number} The magnitude.
 */
Cartesian4.magnitude = function (cartesian) {
  return Math.sqrt(Cartesian4.magnitudeSquared(cartesian));
};

var distanceScratch = new Cartesian4();

/**
 * Computes the 4-space distance between two points.
 *
 * @param {Cartesian4} left The first point to compute the distance from.
 * @param {Cartesian4} right The second point to compute the distance to.
 * @returns {Number} The distance between two points.
 *
 * @example
 * // Returns 1.0
 * var d = Cesium.Cartesian4.distance(
 *   new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0),
 *   new Cesium.Cartesian4(2.0, 0.0, 0.0, 0.0));
 */
Cartesian4.distance = function (left, right) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("left", left);
  Check.typeOf.object("right", right);
  //>>includeEnd('debug');

  Cartesian4.subtract(left, right, distanceScratch);
  return Cartesian4.magnitude(distanceScratch);
};

/**
 * Computes the squared distance between two points.  Comparing squared distances
 * using this function is more efficient than comparing distances using {@link Cartesian4#distance}.
 *
 * @param {Cartesian4} left The first point to compute the distance from.
 * @param {Cartesian4} right The second point to compute the distance to.
 * @returns {Number} The distance between two points.
 *
 * @example
 * // Returns 4.0, not 2.0
 * var d = Cesium.Cartesian4.distance(
 *   new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0),
 *   new Cesium.Cartesian4(3.0, 0.0, 0.0, 0.0));
 */
Cartesian4.distanceSquared = function (left, right) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("left", left);
  Check.typeOf.object("right", right);
  //>>includeEnd('debug');

  Cartesian4.subtract(left, right, distanceScratch);
  return Cartesian4.magnitudeSquared(distanceScratch);
};

/**
 * Computes the normalized form of the supplied Cartesian.
 *
 * @param {Cartesian4} cartesian The Cartesian to be normalized.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.normalize = function (cartesian, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("cartesian", cartesian);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  var magnitude = Cartesian4.magnitude(cartesian);

  result.x = cartesian.x / magnitude;
  result.y = cartesian.y / magnitude;
  result.z = cartesian.z / magnitude;
  result.w = cartesian.w / magnitude;

  //>>includeStart('debug', pragmas.debug);
  if (
    isNaN(result.x) ||
    isNaN(result.y) ||
    isNaN(result.z) ||
    isNaN(result.w)
  ) {
    throw new DeveloperError("normalized result is not a number");
  }
  //>>includeEnd('debug');

  return result;
};

/**
 * Computes the dot (scalar) product of two Cartesians.
 *
 * @param {Cartesian4} left The first Cartesian.
 * @param {Cartesian4} right The second Cartesian.
 * @returns {Number} The dot product.
 */
Cartesian4.dot = function (left, right) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("left", left);
  Check.typeOf.object("right", right);
  //>>includeEnd('debug');

  return (
    left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w
  );
};

/**
 * Computes the componentwise product of two Cartesians.
 *
 * @param {Cartesian4} left The first Cartesian.
 * @param {Cartesian4} right The second Cartesian.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.multiplyComponents = function (left, right, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("left", left);
  Check.typeOf.object("right", right);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = left.x * right.x;
  result.y = left.y * right.y;
  result.z = left.z * right.z;
  result.w = left.w * right.w;
  return result;
};

/**
 * Computes the componentwise quotient of two Cartesians.
 *
 * @param {Cartesian4} left The first Cartesian.
 * @param {Cartesian4} right The second Cartesian.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.divideComponents = function (left, right, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("left", left);
  Check.typeOf.object("right", right);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = left.x / right.x;
  result.y = left.y / right.y;
  result.z = left.z / right.z;
  result.w = left.w / right.w;
  return result;
};

/**
 * Computes the componentwise sum of two Cartesians.
 *
 * @param {Cartesian4} left The first Cartesian.
 * @param {Cartesian4} right The second Cartesian.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.add = function (left, right, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("left", left);
  Check.typeOf.object("right", right);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = left.x + right.x;
  result.y = left.y + right.y;
  result.z = left.z + right.z;
  result.w = left.w + right.w;
  return result;
};

/**
 * Computes the componentwise difference of two Cartesians.
 *
 * @param {Cartesian4} left The first Cartesian.
 * @param {Cartesian4} right The second Cartesian.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.subtract = function (left, right, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("left", left);
  Check.typeOf.object("right", right);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = left.x - right.x;
  result.y = left.y - right.y;
  result.z = left.z - right.z;
  result.w = left.w - right.w;
  return result;
};

/**
 * Multiplies the provided Cartesian componentwise by the provided scalar.
 *
 * @param {Cartesian4} cartesian The Cartesian to be scaled.
 * @param {Number} scalar The scalar to multiply with.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.multiplyByScalar = function (cartesian, scalar, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("cartesian", cartesian);
  Check.typeOf.number("scalar", scalar);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = cartesian.x * scalar;
  result.y = cartesian.y * scalar;
  result.z = cartesian.z * scalar;
  result.w = cartesian.w * scalar;
  return result;
};

/**
 * Divides the provided Cartesian componentwise by the provided scalar.
 *
 * @param {Cartesian4} cartesian The Cartesian to be divided.
 * @param {Number} scalar The scalar to divide by.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.divideByScalar = function (cartesian, scalar, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("cartesian", cartesian);
  Check.typeOf.number("scalar", scalar);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = cartesian.x / scalar;
  result.y = cartesian.y / scalar;
  result.z = cartesian.z / scalar;
  result.w = cartesian.w / scalar;
  return result;
};

/**
 * Negates the provided Cartesian.
 *
 * @param {Cartesian4} cartesian The Cartesian to be negated.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.negate = function (cartesian, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("cartesian", cartesian);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = -cartesian.x;
  result.y = -cartesian.y;
  result.z = -cartesian.z;
  result.w = -cartesian.w;
  return result;
};

/**
 * Computes the absolute value of the provided Cartesian.
 *
 * @param {Cartesian4} cartesian The Cartesian whose absolute value is to be computed.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.abs = function (cartesian, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("cartesian", cartesian);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  result.x = Math.abs(cartesian.x);
  result.y = Math.abs(cartesian.y);
  result.z = Math.abs(cartesian.z);
  result.w = Math.abs(cartesian.w);
  return result;
};

var lerpScratch = new Cartesian4();
/**
 * Computes the linear interpolation or extrapolation at t using the provided cartesians.
 *
 * @param {Cartesian4} start The value corresponding to t at 0.0.
 * @param {Cartesian4}end The value corresponding to t at 1.0.
 * @param {Number} t The point along t at which to interpolate.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter.
 */
Cartesian4.lerp = function (start, end, t, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("start", start);
  Check.typeOf.object("end", end);
  Check.typeOf.number("t", t);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  Cartesian4.multiplyByScalar(end, t, lerpScratch);
  result = Cartesian4.multiplyByScalar(start, 1.0 - t, result);
  return Cartesian4.add(lerpScratch, result, result);
};

var mostOrthogonalAxisScratch = new Cartesian4();
/**
 * Returns the axis that is most orthogonal to the provided Cartesian.
 *
 * @param {Cartesian4} cartesian The Cartesian on which to find the most orthogonal axis.
 * @param {Cartesian4} result The object onto which to store the result.
 * @returns {Cartesian4} The most orthogonal axis.
 */
Cartesian4.mostOrthogonalAxis = function (cartesian, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("cartesian", cartesian);
  Check.typeOf.object("result", result);
  //>>includeEnd('debug');

  var f = Cartesian4.normalize(cartesian, mostOrthogonalAxisScratch);
  Cartesian4.abs(f, f);

  if (f.x <= f.y) {
    if (f.x <= f.z) {
      if (f.x <= f.w) {
        result = Cartesian4.clone(Cartesian4.UNIT_X, result);
      } else {
        result = Cartesian4.clone(Cartesian4.UNIT_W, result);
      }
    } else if (f.z <= f.w) {
      result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
    } else {
      result = Cartesian4.clone(Cartesian4.UNIT_W, result);
    }
  } else if (f.y <= f.z) {
    if (f.y <= f.w) {
      result = Cartesian4.clone(Cartesian4.UNIT_Y, result);
    } else {
      result = Cartesian4.clone(Cartesian4.UNIT_W, result);
    }
  } else if (f.z <= f.w) {
    result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
  } else {
    result = Cartesian4.clone(Cartesian4.UNIT_W, result);
  }

  return result;
};

/**
 * Compares the provided Cartesians componentwise and returns
 * <code>true</code> if they are equal, <code>false</code> otherwise.
 *
 * @param {Cartesian4} [left] The first Cartesian.
 * @param {Cartesian4} [right] The second Cartesian.
 * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
 */
Cartesian4.equals = function (left, right) {
  return (
    left === right ||
    (defined(left) &&
      defined(right) &&
      left.x === right.x &&
      left.y === right.y &&
      left.z === right.z &&
      left.w === right.w)
  );
};

/**
 * @private
 */
Cartesian4.equalsArray = function (cartesian, array, offset) {
  return (
    cartesian.x === array[offset] &&
    cartesian.y === array[offset + 1] &&
    cartesian.z === array[offset + 2] &&
    cartesian.w === array[offset + 3]
  );
};

/**
 * Compares the provided Cartesians componentwise and returns
 * <code>true</code> if they pass an absolute or relative tolerance test,
 * <code>false</code> otherwise.
 *
 * @param {Cartesian4} [left] The first Cartesian.
 * @param {Cartesian4} [right] The second Cartesian.
 * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
 * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
 * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
 */
Cartesian4.equalsEpsilon = function (
  left,
  right,
  relativeEpsilon,
  absoluteEpsilon
) {
  return (
    left === right ||
    (defined(left) &&
      defined(right) &&
      CesiumMath.equalsEpsilon(
        left.x,
        right.x,
        relativeEpsilon,
        absoluteEpsilon
      ) &&
      CesiumMath.equalsEpsilon(
        left.y,
        right.y,
        relativeEpsilon,
        absoluteEpsilon
      ) &&
      CesiumMath.equalsEpsilon(
        left.z,
        right.z,
        relativeEpsilon,
        absoluteEpsilon
      ) &&
      CesiumMath.equalsEpsilon(
        left.w,
        right.w,
        relativeEpsilon,
        absoluteEpsilon
      ))
  );
};

/**
 * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 0.0).
 *
 * @type {Cartesian4}
 * @constant
 */
Cartesian4.ZERO = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 0.0));

/**
 * An immutable Cartesian4 instance initialized to (1.0, 0.0, 0.0, 0.0).
 *
 * @type {Cartesian4}
 * @constant
 */
Cartesian4.UNIT_X = Object.freeze(new Cartesian4(1.0, 0.0, 0.0, 0.0));

/**
 * An immutable Cartesian4 instance initialized to (0.0, 1.0, 0.0, 0.0).
 *
 * @type {Cartesian4}
 * @constant
 */
Cartesian4.UNIT_Y = Object.freeze(new Cartesian4(0.0, 1.0, 0.0, 0.0));

/**
 * An immutable Cartesian4 instance initialized to (0.0, 0.0, 1.0, 0.0).
 *
 * @type {Cartesian4}
 * @constant
 */
Cartesian4.UNIT_Z = Object.freeze(new Cartesian4(0.0, 0.0, 1.0, 0.0));

/**
 * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 1.0).
 *
 * @type {Cartesian4}
 * @constant
 */
Cartesian4.UNIT_W = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 1.0));

/**
 * Duplicates this Cartesian4 instance.
 *
 * @param {Cartesian4} [result] The object onto which to store the result.
 * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
 */
Cartesian4.prototype.clone = function (result) {
  return Cartesian4.clone(this, result);
};

/**
 * Compares this Cartesian against the provided Cartesian componentwise and returns
 * <code>true</code> if they are equal, <code>false</code> otherwise.
 *
 * @param {Cartesian4} [right] The right hand side Cartesian.
 * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
 */
Cartesian4.prototype.equals = function (right) {
  return Cartesian4.equals(this, right);
};

/**
 * Compares this Cartesian against the provided Cartesian componentwise and returns
 * <code>true</code> if they pass an absolute or relative tolerance test,
 * <code>false</code> otherwise.
 *
 * @param {Cartesian4} [right] The right hand side Cartesian.
 * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
 * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
 * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
 */
Cartesian4.prototype.equalsEpsilon = function (
  right,
  relativeEpsilon,
  absoluteEpsilon
) {
  return Cartesian4.equalsEpsilon(
    this,
    right,
    relativeEpsilon,
    absoluteEpsilon
  );
};

/**
 * Creates a string representing this Cartesian in the format '(x, y, z, w)'.
 *
 * @returns {String} A string representing the provided Cartesian in the format '(x, y, z, w)'.
 */
Cartesian4.prototype.toString = function () {
  return "(" + this.x + ", " + this.y + ", " + this.z + ", " + this.w + ")";
};

// scratchU8Array and scratchF32Array are views into the same buffer
var scratchF32Array = new Float32Array(1);
var scratchU8Array = new Uint8Array(scratchF32Array.buffer);

var testU32 = new Uint32Array([0x11223344]);
var testU8 = new Uint8Array(testU32.buffer);
var littleEndian = testU8[0] === 0x44;

/**
 * Packs an arbitrary floating point value to 4 values representable using uint8.
 *
 * @param {Number} value A floating point number.
 * @param {Cartesian4} [result] The Cartesian4 that will contain the packed float.
 * @returns {Cartesian4} A Cartesian4 representing the float packed to values in x, y, z, and w.
 */
Cartesian4.packFloat = function (value, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.number("value", value);
  //>>includeEnd('debug');

  if (!defined(result)) {
    result = new Cartesian4();
  }

  // scratchU8Array and scratchF32Array are views into the same buffer
  scratchF32Array[0] = value;

  if (littleEndian) {
    result.x = scratchU8Array[0];
    result.y = scratchU8Array[1];
    result.z = scratchU8Array[2];
    result.w = scratchU8Array[3];
  } else {
    // convert from big-endian to little-endian
    result.x = scratchU8Array[3];
    result.y = scratchU8Array[2];
    result.z = scratchU8Array[1];
    result.w = scratchU8Array[0];
  }
  return result;
};

/**
 * Unpacks a float packed using Cartesian4.packFloat.
 *
 * @param {Cartesian4} packedFloat A Cartesian4 containing a float packed to 4 values representable using uint8.
 * @returns {Number} The unpacked float.
 * @private
 */
Cartesian4.unpackFloat = function (packedFloat) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("packedFloat", packedFloat);
  //>>includeEnd('debug');

  // scratchU8Array and scratchF32Array are views into the same buffer
  if (littleEndian) {
    scratchU8Array[0] = packedFloat.x;
    scratchU8Array[1] = packedFloat.y;
    scratchU8Array[2] = packedFloat.z;
    scratchU8Array[3] = packedFloat.w;
  } else {
    // convert from little-endian to big-endian
    scratchU8Array[0] = packedFloat.w;
    scratchU8Array[1] = packedFloat.z;
    scratchU8Array[2] = packedFloat.y;
    scratchU8Array[3] = packedFloat.x;
  }
  return scratchF32Array[0];
};
export default Cartesian4;