Newer
Older
casic-smartcity-well-front / static / Cesium / Core / RectangleGeometry.js
[wangxitong] on 8 Jul 2021 45 KB mars3d总览
import arrayFill from "./arrayFill.js";
import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import Cartographic from "./Cartographic.js";
import Check from "./Check.js";
import ComponentDatatype from "./ComponentDatatype.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import GeometryInstance from "./GeometryInstance.js";
import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";
import GeometryPipeline from "./GeometryPipeline.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import Matrix2 from "./Matrix2.js";
import Matrix3 from "./Matrix3.js";
import PolygonPipeline from "./PolygonPipeline.js";
import PrimitiveType from "./PrimitiveType.js";
import Quaternion from "./Quaternion.js";
import Rectangle from "./Rectangle.js";
import RectangleGeometryLibrary from "./RectangleGeometryLibrary.js";
import VertexFormat from "./VertexFormat.js";

var positionScratch = new Cartesian3();
var normalScratch = new Cartesian3();
var tangentScratch = new Cartesian3();
var bitangentScratch = new Cartesian3();
var rectangleScratch = new Rectangle();
var stScratch = new Cartesian2();
var bottomBoundingSphere = new BoundingSphere();
var topBoundingSphere = new BoundingSphere();

function createAttributes(vertexFormat, attributes) {
  var geo = new Geometry({
    attributes: new GeometryAttributes(),
    primitiveType: PrimitiveType.TRIANGLES,
  });

  geo.attributes.position = new GeometryAttribute({
    componentDatatype: ComponentDatatype.DOUBLE,
    componentsPerAttribute: 3,
    values: attributes.positions,
  });
  if (vertexFormat.normal) {
    geo.attributes.normal = new GeometryAttribute({
      componentDatatype: ComponentDatatype.FLOAT,
      componentsPerAttribute: 3,
      values: attributes.normals,
    });
  }
  if (vertexFormat.tangent) {
    geo.attributes.tangent = new GeometryAttribute({
      componentDatatype: ComponentDatatype.FLOAT,
      componentsPerAttribute: 3,
      values: attributes.tangents,
    });
  }
  if (vertexFormat.bitangent) {
    geo.attributes.bitangent = new GeometryAttribute({
      componentDatatype: ComponentDatatype.FLOAT,
      componentsPerAttribute: 3,
      values: attributes.bitangents,
    });
  }
  return geo;
}

function calculateAttributes(
  positions,
  vertexFormat,
  ellipsoid,
  tangentRotationMatrix
) {
  var length = positions.length;

  var normals = vertexFormat.normal ? new Float32Array(length) : undefined;
  var tangents = vertexFormat.tangent ? new Float32Array(length) : undefined;
  var bitangents = vertexFormat.bitangent
    ? new Float32Array(length)
    : undefined;

  var attrIndex = 0;
  var bitangent = bitangentScratch;
  var tangent = tangentScratch;
  var normal = normalScratch;
  if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
    for (var i = 0; i < length; i += 3) {
      var p = Cartesian3.fromArray(positions, i, positionScratch);
      var attrIndex1 = attrIndex + 1;
      var attrIndex2 = attrIndex + 2;

      normal = ellipsoid.geodeticSurfaceNormal(p, normal);
      if (vertexFormat.tangent || vertexFormat.bitangent) {
        Cartesian3.cross(Cartesian3.UNIT_Z, normal, tangent);
        Matrix3.multiplyByVector(tangentRotationMatrix, tangent, tangent);
        Cartesian3.normalize(tangent, tangent);

        if (vertexFormat.bitangent) {
          Cartesian3.normalize(
            Cartesian3.cross(normal, tangent, bitangent),
            bitangent
          );
        }
      }

      if (vertexFormat.normal) {
        normals[attrIndex] = normal.x;
        normals[attrIndex1] = normal.y;
        normals[attrIndex2] = normal.z;
      }
      if (vertexFormat.tangent) {
        tangents[attrIndex] = tangent.x;
        tangents[attrIndex1] = tangent.y;
        tangents[attrIndex2] = tangent.z;
      }
      if (vertexFormat.bitangent) {
        bitangents[attrIndex] = bitangent.x;
        bitangents[attrIndex1] = bitangent.y;
        bitangents[attrIndex2] = bitangent.z;
      }
      attrIndex += 3;
    }
  }
  return createAttributes(vertexFormat, {
    positions: positions,
    normals: normals,
    tangents: tangents,
    bitangents: bitangents,
  });
}

var v1Scratch = new Cartesian3();
var v2Scratch = new Cartesian3();

function calculateAttributesWall(positions, vertexFormat, ellipsoid) {
  var length = positions.length;

  var normals = vertexFormat.normal ? new Float32Array(length) : undefined;
  var tangents = vertexFormat.tangent ? new Float32Array(length) : undefined;
  var bitangents = vertexFormat.bitangent
    ? new Float32Array(length)
    : undefined;

  var normalIndex = 0;
  var tangentIndex = 0;
  var bitangentIndex = 0;
  var recomputeNormal = true;

  var bitangent = bitangentScratch;
  var tangent = tangentScratch;
  var normal = normalScratch;
  if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
    for (var i = 0; i < length; i += 6) {
      var p = Cartesian3.fromArray(positions, i, positionScratch);
      var p1 = Cartesian3.fromArray(positions, (i + 6) % length, v1Scratch);
      if (recomputeNormal) {
        var p2 = Cartesian3.fromArray(positions, (i + 3) % length, v2Scratch);
        Cartesian3.subtract(p1, p, p1);
        Cartesian3.subtract(p2, p, p2);
        normal = Cartesian3.normalize(Cartesian3.cross(p2, p1, normal), normal);
        recomputeNormal = false;
      }

      if (Cartesian3.equalsEpsilon(p1, p, CesiumMath.EPSILON10)) {
        // if we've reached a corner
        recomputeNormal = true;
      }

      if (vertexFormat.tangent || vertexFormat.bitangent) {
        bitangent = ellipsoid.geodeticSurfaceNormal(p, bitangent);
        if (vertexFormat.tangent) {
          tangent = Cartesian3.normalize(
            Cartesian3.cross(bitangent, normal, tangent),
            tangent
          );
        }
      }

      if (vertexFormat.normal) {
        normals[normalIndex++] = normal.x;
        normals[normalIndex++] = normal.y;
        normals[normalIndex++] = normal.z;
        normals[normalIndex++] = normal.x;
        normals[normalIndex++] = normal.y;
        normals[normalIndex++] = normal.z;
      }

      if (vertexFormat.tangent) {
        tangents[tangentIndex++] = tangent.x;
        tangents[tangentIndex++] = tangent.y;
        tangents[tangentIndex++] = tangent.z;
        tangents[tangentIndex++] = tangent.x;
        tangents[tangentIndex++] = tangent.y;
        tangents[tangentIndex++] = tangent.z;
      }

      if (vertexFormat.bitangent) {
        bitangents[bitangentIndex++] = bitangent.x;
        bitangents[bitangentIndex++] = bitangent.y;
        bitangents[bitangentIndex++] = bitangent.z;
        bitangents[bitangentIndex++] = bitangent.x;
        bitangents[bitangentIndex++] = bitangent.y;
        bitangents[bitangentIndex++] = bitangent.z;
      }
    }
  }

  return createAttributes(vertexFormat, {
    positions: positions,
    normals: normals,
    tangents: tangents,
    bitangents: bitangents,
  });
}

function constructRectangle(rectangleGeometry, computedOptions) {
  var vertexFormat = rectangleGeometry._vertexFormat;
  var ellipsoid = rectangleGeometry._ellipsoid;
  var height = computedOptions.height;
  var width = computedOptions.width;
  var northCap = computedOptions.northCap;
  var southCap = computedOptions.southCap;

  var rowStart = 0;
  var rowEnd = height;
  var rowHeight = height;
  var size = 0;
  if (northCap) {
    rowStart = 1;
    rowHeight -= 1;
    size += 1;
  }
  if (southCap) {
    rowEnd -= 1;
    rowHeight -= 1;
    size += 1;
  }
  size += width * rowHeight;

  var positions = vertexFormat.position
    ? new Float64Array(size * 3)
    : undefined;
  var textureCoordinates = vertexFormat.st
    ? new Float32Array(size * 2)
    : undefined;

  var posIndex = 0;
  var stIndex = 0;

  var position = positionScratch;
  var st = stScratch;

  var minX = Number.MAX_VALUE;
  var minY = Number.MAX_VALUE;
  var maxX = -Number.MAX_VALUE;
  var maxY = -Number.MAX_VALUE;

  for (var row = rowStart; row < rowEnd; ++row) {
    for (var col = 0; col < width; ++col) {
      RectangleGeometryLibrary.computePosition(
        computedOptions,
        ellipsoid,
        vertexFormat.st,
        row,
        col,
        position,
        st
      );

      positions[posIndex++] = position.x;
      positions[posIndex++] = position.y;
      positions[posIndex++] = position.z;

      if (vertexFormat.st) {
        textureCoordinates[stIndex++] = st.x;
        textureCoordinates[stIndex++] = st.y;

        minX = Math.min(minX, st.x);
        minY = Math.min(minY, st.y);
        maxX = Math.max(maxX, st.x);
        maxY = Math.max(maxY, st.y);
      }
    }
  }
  if (northCap) {
    RectangleGeometryLibrary.computePosition(
      computedOptions,
      ellipsoid,
      vertexFormat.st,
      0,
      0,
      position,
      st
    );

    positions[posIndex++] = position.x;
    positions[posIndex++] = position.y;
    positions[posIndex++] = position.z;

    if (vertexFormat.st) {
      textureCoordinates[stIndex++] = st.x;
      textureCoordinates[stIndex++] = st.y;

      minX = st.x;
      minY = st.y;
      maxX = st.x;
      maxY = st.y;
    }
  }
  if (southCap) {
    RectangleGeometryLibrary.computePosition(
      computedOptions,
      ellipsoid,
      vertexFormat.st,
      height - 1,
      0,
      position,
      st
    );

    positions[posIndex++] = position.x;
    positions[posIndex++] = position.y;
    positions[posIndex] = position.z;

    if (vertexFormat.st) {
      textureCoordinates[stIndex++] = st.x;
      textureCoordinates[stIndex] = st.y;

      minX = Math.min(minX, st.x);
      minY = Math.min(minY, st.y);
      maxX = Math.max(maxX, st.x);
      maxY = Math.max(maxY, st.y);
    }
  }

  if (
    vertexFormat.st &&
    (minX < 0.0 || minY < 0.0 || maxX > 1.0 || maxY > 1.0)
  ) {
    for (var k = 0; k < textureCoordinates.length; k += 2) {
      textureCoordinates[k] = (textureCoordinates[k] - minX) / (maxX - minX);
      textureCoordinates[k + 1] =
        (textureCoordinates[k + 1] - minY) / (maxY - minY);
    }
  }

  var geo = calculateAttributes(
    positions,
    vertexFormat,
    ellipsoid,
    computedOptions.tangentRotationMatrix
  );

  var indicesSize = 6 * (width - 1) * (rowHeight - 1);
  if (northCap) {
    indicesSize += 3 * (width - 1);
  }
  if (southCap) {
    indicesSize += 3 * (width - 1);
  }
  var indices = IndexDatatype.createTypedArray(size, indicesSize);
  var index = 0;
  var indicesIndex = 0;
  var i;
  for (i = 0; i < rowHeight - 1; ++i) {
    for (var j = 0; j < width - 1; ++j) {
      var upperLeft = index;
      var lowerLeft = upperLeft + width;
      var lowerRight = lowerLeft + 1;
      var upperRight = upperLeft + 1;
      indices[indicesIndex++] = upperLeft;
      indices[indicesIndex++] = lowerLeft;
      indices[indicesIndex++] = upperRight;
      indices[indicesIndex++] = upperRight;
      indices[indicesIndex++] = lowerLeft;
      indices[indicesIndex++] = lowerRight;
      ++index;
    }
    ++index;
  }
  if (northCap || southCap) {
    var northIndex = size - 1;
    var southIndex = size - 1;
    if (northCap && southCap) {
      northIndex = size - 2;
    }

    var p1;
    var p2;
    index = 0;

    if (northCap) {
      for (i = 0; i < width - 1; i++) {
        p1 = index;
        p2 = p1 + 1;
        indices[indicesIndex++] = northIndex;
        indices[indicesIndex++] = p1;
        indices[indicesIndex++] = p2;
        ++index;
      }
    }
    if (southCap) {
      index = (rowHeight - 1) * width;
      for (i = 0; i < width - 1; i++) {
        p1 = index;
        p2 = p1 + 1;
        indices[indicesIndex++] = p1;
        indices[indicesIndex++] = southIndex;
        indices[indicesIndex++] = p2;
        ++index;
      }
    }
  }

  geo.indices = indices;
  if (vertexFormat.st) {
    geo.attributes.st = new GeometryAttribute({
      componentDatatype: ComponentDatatype.FLOAT,
      componentsPerAttribute: 2,
      values: textureCoordinates,
    });
  }

  return geo;
}

function addWallPositions(
  wallPositions,
  posIndex,
  i,
  topPositions,
  bottomPositions
) {
  wallPositions[posIndex++] = topPositions[i];
  wallPositions[posIndex++] = topPositions[i + 1];
  wallPositions[posIndex++] = topPositions[i + 2];
  wallPositions[posIndex++] = bottomPositions[i];
  wallPositions[posIndex++] = bottomPositions[i + 1];
  wallPositions[posIndex] = bottomPositions[i + 2];
  return wallPositions;
}

function addWallTextureCoordinates(wallTextures, stIndex, i, st) {
  wallTextures[stIndex++] = st[i];
  wallTextures[stIndex++] = st[i + 1];
  wallTextures[stIndex++] = st[i];
  wallTextures[stIndex] = st[i + 1];
  return wallTextures;
}

var scratchVertexFormat = new VertexFormat();

function constructExtrudedRectangle(rectangleGeometry, computedOptions) {
  var shadowVolume = rectangleGeometry._shadowVolume;
  var offsetAttributeValue = rectangleGeometry._offsetAttribute;
  var vertexFormat = rectangleGeometry._vertexFormat;
  var minHeight = rectangleGeometry._extrudedHeight;
  var maxHeight = rectangleGeometry._surfaceHeight;
  var ellipsoid = rectangleGeometry._ellipsoid;

  var height = computedOptions.height;
  var width = computedOptions.width;

  var i;

  if (shadowVolume) {
    var newVertexFormat = VertexFormat.clone(vertexFormat, scratchVertexFormat);
    newVertexFormat.normal = true;
    rectangleGeometry._vertexFormat = newVertexFormat;
  }

  var topBottomGeo = constructRectangle(rectangleGeometry, computedOptions);

  if (shadowVolume) {
    rectangleGeometry._vertexFormat = vertexFormat;
  }

  var topPositions = PolygonPipeline.scaleToGeodeticHeight(
    topBottomGeo.attributes.position.values,
    maxHeight,
    ellipsoid,
    false
  );
  topPositions = new Float64Array(topPositions);
  var length = topPositions.length;
  var newLength = length * 2;
  var positions = new Float64Array(newLength);
  positions.set(topPositions);
  var bottomPositions = PolygonPipeline.scaleToGeodeticHeight(
    topBottomGeo.attributes.position.values,
    minHeight,
    ellipsoid
  );
  positions.set(bottomPositions, length);
  topBottomGeo.attributes.position.values = positions;

  var normals = vertexFormat.normal ? new Float32Array(newLength) : undefined;
  var tangents = vertexFormat.tangent ? new Float32Array(newLength) : undefined;
  var bitangents = vertexFormat.bitangent
    ? new Float32Array(newLength)
    : undefined;
  var textures = vertexFormat.st
    ? new Float32Array((newLength / 3) * 2)
    : undefined;
  var topSt;
  var topNormals;
  if (vertexFormat.normal) {
    topNormals = topBottomGeo.attributes.normal.values;
    normals.set(topNormals);
    for (i = 0; i < length; i++) {
      topNormals[i] = -topNormals[i];
    }
    normals.set(topNormals, length);
    topBottomGeo.attributes.normal.values = normals;
  }
  if (shadowVolume) {
    topNormals = topBottomGeo.attributes.normal.values;
    if (!vertexFormat.normal) {
      topBottomGeo.attributes.normal = undefined;
    }
    var extrudeNormals = new Float32Array(newLength);
    for (i = 0; i < length; i++) {
      topNormals[i] = -topNormals[i];
    }
    extrudeNormals.set(topNormals, length); //only get normals for bottom layer that's going to be pushed down
    topBottomGeo.attributes.extrudeDirection = new GeometryAttribute({
      componentDatatype: ComponentDatatype.FLOAT,
      componentsPerAttribute: 3,
      values: extrudeNormals,
    });
  }

  var offsetValue;
  var hasOffsets = defined(offsetAttributeValue);
  if (hasOffsets) {
    var size = (length / 3) * 2;
    var offsetAttribute = new Uint8Array(size);
    if (offsetAttributeValue === GeometryOffsetAttribute.TOP) {
      offsetAttribute = arrayFill(offsetAttribute, 1, 0, size / 2);
    } else {
      offsetValue =
        offsetAttributeValue === GeometryOffsetAttribute.NONE ? 0 : 1;
      offsetAttribute = arrayFill(offsetAttribute, offsetValue);
    }

    topBottomGeo.attributes.applyOffset = new GeometryAttribute({
      componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
      componentsPerAttribute: 1,
      values: offsetAttribute,
    });
  }

  if (vertexFormat.tangent) {
    var topTangents = topBottomGeo.attributes.tangent.values;
    tangents.set(topTangents);
    for (i = 0; i < length; i++) {
      topTangents[i] = -topTangents[i];
    }
    tangents.set(topTangents, length);
    topBottomGeo.attributes.tangent.values = tangents;
  }
  if (vertexFormat.bitangent) {
    var topBitangents = topBottomGeo.attributes.bitangent.values;
    bitangents.set(topBitangents);
    bitangents.set(topBitangents, length);
    topBottomGeo.attributes.bitangent.values = bitangents;
  }
  if (vertexFormat.st) {
    topSt = topBottomGeo.attributes.st.values;
    textures.set(topSt);
    textures.set(topSt, (length / 3) * 2);
    topBottomGeo.attributes.st.values = textures;
  }

  var indices = topBottomGeo.indices;
  var indicesLength = indices.length;
  var posLength = length / 3;
  var newIndices = IndexDatatype.createTypedArray(
    newLength / 3,
    indicesLength * 2
  );
  newIndices.set(indices);
  for (i = 0; i < indicesLength; i += 3) {
    newIndices[i + indicesLength] = indices[i + 2] + posLength;
    newIndices[i + 1 + indicesLength] = indices[i + 1] + posLength;
    newIndices[i + 2 + indicesLength] = indices[i] + posLength;
  }
  topBottomGeo.indices = newIndices;

  var northCap = computedOptions.northCap;
  var southCap = computedOptions.southCap;

  var rowHeight = height;
  var widthMultiplier = 2;
  var perimeterPositions = 0;
  var corners = 4;
  var dupliateCorners = 4;
  if (northCap) {
    widthMultiplier -= 1;
    rowHeight -= 1;
    perimeterPositions += 1;
    corners -= 2;
    dupliateCorners -= 1;
  }
  if (southCap) {
    widthMultiplier -= 1;
    rowHeight -= 1;
    perimeterPositions += 1;
    corners -= 2;
    dupliateCorners -= 1;
  }
  perimeterPositions += widthMultiplier * width + 2 * rowHeight - corners;

  var wallCount = (perimeterPositions + dupliateCorners) * 2;

  var wallPositions = new Float64Array(wallCount * 3);
  var wallExtrudeNormals = shadowVolume
    ? new Float32Array(wallCount * 3)
    : undefined;
  var wallOffsetAttribute = hasOffsets ? new Uint8Array(wallCount) : undefined;
  var wallTextures = vertexFormat.st
    ? new Float32Array(wallCount * 2)
    : undefined;

  var computeTopOffsets = offsetAttributeValue === GeometryOffsetAttribute.TOP;
  if (hasOffsets && !computeTopOffsets) {
    offsetValue = offsetAttributeValue === GeometryOffsetAttribute.ALL ? 1 : 0;
    wallOffsetAttribute = arrayFill(wallOffsetAttribute, offsetValue);
  }

  var posIndex = 0;
  var stIndex = 0;
  var extrudeNormalIndex = 0;
  var wallOffsetIndex = 0;
  var area = width * rowHeight;
  var threeI;
  for (i = 0; i < area; i += width) {
    threeI = i * 3;
    wallPositions = addWallPositions(
      wallPositions,
      posIndex,
      threeI,
      topPositions,
      bottomPositions
    );
    posIndex += 6;
    if (vertexFormat.st) {
      wallTextures = addWallTextureCoordinates(
        wallTextures,
        stIndex,
        i * 2,
        topSt
      );
      stIndex += 4;
    }
    if (shadowVolume) {
      extrudeNormalIndex += 3;
      wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
      wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
      wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
    }
    if (computeTopOffsets) {
      wallOffsetAttribute[wallOffsetIndex++] = 1;
      wallOffsetIndex += 1;
    }
  }

  if (!southCap) {
    for (i = area - width; i < area; i++) {
      threeI = i * 3;
      wallPositions = addWallPositions(
        wallPositions,
        posIndex,
        threeI,
        topPositions,
        bottomPositions
      );
      posIndex += 6;
      if (vertexFormat.st) {
        wallTextures = addWallTextureCoordinates(
          wallTextures,
          stIndex,
          i * 2,
          topSt
        );
        stIndex += 4;
      }
      if (shadowVolume) {
        extrudeNormalIndex += 3;
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
      }
      if (computeTopOffsets) {
        wallOffsetAttribute[wallOffsetIndex++] = 1;
        wallOffsetIndex += 1;
      }
    }
  } else {
    var southIndex = northCap ? area + 1 : area;
    threeI = southIndex * 3;

    for (i = 0; i < 2; i++) {
      // duplicate corner points
      wallPositions = addWallPositions(
        wallPositions,
        posIndex,
        threeI,
        topPositions,
        bottomPositions
      );
      posIndex += 6;
      if (vertexFormat.st) {
        wallTextures = addWallTextureCoordinates(
          wallTextures,
          stIndex,
          southIndex * 2,
          topSt
        );
        stIndex += 4;
      }
      if (shadowVolume) {
        extrudeNormalIndex += 3;
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
      }
      if (computeTopOffsets) {
        wallOffsetAttribute[wallOffsetIndex++] = 1;
        wallOffsetIndex += 1;
      }
    }
  }

  for (i = area - 1; i > 0; i -= width) {
    threeI = i * 3;
    wallPositions = addWallPositions(
      wallPositions,
      posIndex,
      threeI,
      topPositions,
      bottomPositions
    );
    posIndex += 6;
    if (vertexFormat.st) {
      wallTextures = addWallTextureCoordinates(
        wallTextures,
        stIndex,
        i * 2,
        topSt
      );
      stIndex += 4;
    }
    if (shadowVolume) {
      extrudeNormalIndex += 3;
      wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
      wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
      wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
    }
    if (computeTopOffsets) {
      wallOffsetAttribute[wallOffsetIndex++] = 1;
      wallOffsetIndex += 1;
    }
  }

  if (!northCap) {
    for (i = width - 1; i >= 0; i--) {
      threeI = i * 3;
      wallPositions = addWallPositions(
        wallPositions,
        posIndex,
        threeI,
        topPositions,
        bottomPositions
      );
      posIndex += 6;
      if (vertexFormat.st) {
        wallTextures = addWallTextureCoordinates(
          wallTextures,
          stIndex,
          i * 2,
          topSt
        );
        stIndex += 4;
      }
      if (shadowVolume) {
        extrudeNormalIndex += 3;
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
      }
      if (computeTopOffsets) {
        wallOffsetAttribute[wallOffsetIndex++] = 1;
        wallOffsetIndex += 1;
      }
    }
  } else {
    var northIndex = area;
    threeI = northIndex * 3;

    for (i = 0; i < 2; i++) {
      // duplicate corner points
      wallPositions = addWallPositions(
        wallPositions,
        posIndex,
        threeI,
        topPositions,
        bottomPositions
      );
      posIndex += 6;
      if (vertexFormat.st) {
        wallTextures = addWallTextureCoordinates(
          wallTextures,
          stIndex,
          northIndex * 2,
          topSt
        );
        stIndex += 4;
      }
      if (shadowVolume) {
        extrudeNormalIndex += 3;
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
        wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
      }
      if (computeTopOffsets) {
        wallOffsetAttribute[wallOffsetIndex++] = 1;
        wallOffsetIndex += 1;
      }
    }
  }

  var geo = calculateAttributesWall(wallPositions, vertexFormat, ellipsoid);

  if (vertexFormat.st) {
    geo.attributes.st = new GeometryAttribute({
      componentDatatype: ComponentDatatype.FLOAT,
      componentsPerAttribute: 2,
      values: wallTextures,
    });
  }
  if (shadowVolume) {
    geo.attributes.extrudeDirection = new GeometryAttribute({
      componentDatatype: ComponentDatatype.FLOAT,
      componentsPerAttribute: 3,
      values: wallExtrudeNormals,
    });
  }
  if (hasOffsets) {
    geo.attributes.applyOffset = new GeometryAttribute({
      componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
      componentsPerAttribute: 1,
      values: wallOffsetAttribute,
    });
  }

  var wallIndices = IndexDatatype.createTypedArray(
    wallCount,
    perimeterPositions * 6
  );

  var upperLeft;
  var lowerLeft;
  var lowerRight;
  var upperRight;
  length = wallPositions.length / 3;
  var index = 0;
  for (i = 0; i < length - 1; i += 2) {
    upperLeft = i;
    upperRight = (upperLeft + 2) % length;
    var p1 = Cartesian3.fromArray(wallPositions, upperLeft * 3, v1Scratch);
    var p2 = Cartesian3.fromArray(wallPositions, upperRight * 3, v2Scratch);
    if (Cartesian3.equalsEpsilon(p1, p2, CesiumMath.EPSILON10)) {
      continue;
    }
    lowerLeft = (upperLeft + 1) % length;
    lowerRight = (lowerLeft + 2) % length;
    wallIndices[index++] = upperLeft;
    wallIndices[index++] = lowerLeft;
    wallIndices[index++] = upperRight;
    wallIndices[index++] = upperRight;
    wallIndices[index++] = lowerLeft;
    wallIndices[index++] = lowerRight;
  }

  geo.indices = wallIndices;

  geo = GeometryPipeline.combineInstances([
    new GeometryInstance({
      geometry: topBottomGeo,
    }),
    new GeometryInstance({
      geometry: geo,
    }),
  ]);

  return geo[0];
}

var scratchRectanglePoints = [
  new Cartesian3(),
  new Cartesian3(),
  new Cartesian3(),
  new Cartesian3(),
];
var nwScratch = new Cartographic();
var stNwScratch = new Cartographic();
function computeRectangle(rectangle, granularity, rotation, ellipsoid, result) {
  if (rotation === 0.0) {
    return Rectangle.clone(rectangle, result);
  }

  var computedOptions = RectangleGeometryLibrary.computeOptions(
    rectangle,
    granularity,
    rotation,
    0,
    rectangleScratch,
    nwScratch
  );

  var height = computedOptions.height;
  var width = computedOptions.width;

  var positions = scratchRectanglePoints;
  RectangleGeometryLibrary.computePosition(
    computedOptions,
    ellipsoid,
    false,
    0,
    0,
    positions[0]
  );
  RectangleGeometryLibrary.computePosition(
    computedOptions,
    ellipsoid,
    false,
    0,
    width - 1,
    positions[1]
  );
  RectangleGeometryLibrary.computePosition(
    computedOptions,
    ellipsoid,
    false,
    height - 1,
    0,
    positions[2]
  );
  RectangleGeometryLibrary.computePosition(
    computedOptions,
    ellipsoid,
    false,
    height - 1,
    width - 1,
    positions[3]
  );

  return Rectangle.fromCartesianArray(positions, ellipsoid, result);
}

/**
 * A description of a cartographic rectangle on an ellipsoid centered at the origin. Rectangle geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
 *
 * @alias RectangleGeometry
 * @constructor
 *
 * @param {Object} options Object with the following properties:
 * @param {Rectangle} options.rectangle A cartographic rectangle with north, south, east and west properties in radians.
 * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
 * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle lies.
 * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
 * @param {Number} [options.height=0.0] The distance in meters between the rectangle and the ellipsoid surface.
 * @param {Number} [options.rotation=0.0] The rotation of the rectangle, in radians. A positive rotation is counter-clockwise.
 * @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates, in radians. A positive rotation is counter-clockwise.
 * @param {Number} [options.extrudedHeight] The distance in meters between the rectangle's extruded face and the ellipsoid surface.
 *
 * @exception {DeveloperError} <code>options.rectangle.north</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
 * @exception {DeveloperError} <code>options.rectangle.south</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
 * @exception {DeveloperError} <code>options.rectangle.east</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
 * @exception {DeveloperError} <code>options.rectangle.west</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
 * @exception {DeveloperError} <code>options.rectangle.north</code> must be greater than <code>options.rectangle.south</code>.
 *
 * @see RectangleGeometry#createGeometry
 *
 * @demo {@link https://sandcastle.cesium.com/index.html?src=Rectangle.html|Cesium Sandcastle Rectangle Demo}
 *
 * @example
 * // 1. create a rectangle
 * var rectangle = new Cesium.RectangleGeometry({
 *   ellipsoid : Cesium.Ellipsoid.WGS84,
 *   rectangle : Cesium.Rectangle.fromDegrees(-80.0, 39.0, -74.0, 42.0),
 *   height : 10000.0
 * });
 * var geometry = Cesium.RectangleGeometry.createGeometry(rectangle);
 *
 * // 2. create an extruded rectangle without a top
 * var rectangle = new Cesium.RectangleGeometry({
 *   ellipsoid : Cesium.Ellipsoid.WGS84,
 *   rectangle : Cesium.Rectangle.fromDegrees(-80.0, 39.0, -74.0, 42.0),
 *   height : 10000.0,
 *   extrudedHeight: 300000
 * });
 * var geometry = Cesium.RectangleGeometry.createGeometry(rectangle);
 */
function RectangleGeometry(options) {
  options = defaultValue(options, defaultValue.EMPTY_OBJECT);

  var rectangle = options.rectangle;

  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("rectangle", rectangle);
  Rectangle.validate(rectangle);
  if (rectangle.north < rectangle.south) {
    throw new DeveloperError(
      "options.rectangle.north must be greater than or equal to options.rectangle.south"
    );
  }
  //>>includeEnd('debug');

  var height = defaultValue(options.height, 0.0);
  var extrudedHeight = defaultValue(options.extrudedHeight, height);

  this._rectangle = Rectangle.clone(rectangle);
  this._granularity = defaultValue(
    options.granularity,
    CesiumMath.RADIANS_PER_DEGREE
  );
  this._ellipsoid = Ellipsoid.clone(
    defaultValue(options.ellipsoid, Ellipsoid.WGS84)
  );
  this._surfaceHeight = Math.max(height, extrudedHeight);
  this._rotation = defaultValue(options.rotation, 0.0);
  this._stRotation = defaultValue(options.stRotation, 0.0);
  this._vertexFormat = VertexFormat.clone(
    defaultValue(options.vertexFormat, VertexFormat.DEFAULT)
  );
  this._extrudedHeight = Math.min(height, extrudedHeight);
  this._shadowVolume = defaultValue(options.shadowVolume, false);
  this._workerName = "createRectangleGeometry";
  this._offsetAttribute = options.offsetAttribute;
  this._rotatedRectangle = undefined;

  this._textureCoordinateRotationPoints = undefined;
}

/**
 * The number of elements used to pack the object into an array.
 * @type {Number}
 */
RectangleGeometry.packedLength =
  Rectangle.packedLength +
  Ellipsoid.packedLength +
  VertexFormat.packedLength +
  7;

/**
 * Stores the provided instance into the provided array.
 *
 * @param {RectangleGeometry} value The value to pack.
 * @param {Number[]} array The array to pack into.
 * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
 *
 * @returns {Number[]} The array that was packed into
 */
RectangleGeometry.pack = function (value, array, startingIndex) {
  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("value", value);
  Check.defined("array", array);
  //>>includeEnd('debug');

  startingIndex = defaultValue(startingIndex, 0);

  Rectangle.pack(value._rectangle, array, startingIndex);
  startingIndex += Rectangle.packedLength;

  Ellipsoid.pack(value._ellipsoid, array, startingIndex);
  startingIndex += Ellipsoid.packedLength;

  VertexFormat.pack(value._vertexFormat, array, startingIndex);
  startingIndex += VertexFormat.packedLength;

  array[startingIndex++] = value._granularity;
  array[startingIndex++] = value._surfaceHeight;
  array[startingIndex++] = value._rotation;
  array[startingIndex++] = value._stRotation;
  array[startingIndex++] = value._extrudedHeight;
  array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0;
  array[startingIndex] = defaultValue(value._offsetAttribute, -1);

  return array;
};

var scratchRectangle = new Rectangle();
var scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);
var scratchOptions = {
  rectangle: scratchRectangle,
  ellipsoid: scratchEllipsoid,
  vertexFormat: scratchVertexFormat,
  granularity: undefined,
  height: undefined,
  rotation: undefined,
  stRotation: undefined,
  extrudedHeight: undefined,
  shadowVolume: undefined,
  offsetAttribute: undefined,
};

/**
 * Retrieves an instance from a packed array.
 *
 * @param {Number[]} array The packed array.
 * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
 * @param {RectangleGeometry} [result] The object into which to store the result.
 * @returns {RectangleGeometry} The modified result parameter or a new RectangleGeometry instance if one was not provided.
 */
RectangleGeometry.unpack = function (array, startingIndex, result) {
  //>>includeStart('debug', pragmas.debug);
  Check.defined("array", array);
  //>>includeEnd('debug');

  startingIndex = defaultValue(startingIndex, 0);

  var rectangle = Rectangle.unpack(array, startingIndex, scratchRectangle);
  startingIndex += Rectangle.packedLength;

  var ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
  startingIndex += Ellipsoid.packedLength;

  var vertexFormat = VertexFormat.unpack(
    array,
    startingIndex,
    scratchVertexFormat
  );
  startingIndex += VertexFormat.packedLength;

  var granularity = array[startingIndex++];
  var surfaceHeight = array[startingIndex++];
  var rotation = array[startingIndex++];
  var stRotation = array[startingIndex++];
  var extrudedHeight = array[startingIndex++];
  var shadowVolume = array[startingIndex++] === 1.0;
  var offsetAttribute = array[startingIndex];

  if (!defined(result)) {
    scratchOptions.granularity = granularity;
    scratchOptions.height = surfaceHeight;
    scratchOptions.rotation = rotation;
    scratchOptions.stRotation = stRotation;
    scratchOptions.extrudedHeight = extrudedHeight;
    scratchOptions.shadowVolume = shadowVolume;
    scratchOptions.offsetAttribute =
      offsetAttribute === -1 ? undefined : offsetAttribute;

    return new RectangleGeometry(scratchOptions);
  }

  result._rectangle = Rectangle.clone(rectangle, result._rectangle);
  result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid);
  result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
  result._granularity = granularity;
  result._surfaceHeight = surfaceHeight;
  result._rotation = rotation;
  result._stRotation = stRotation;
  result._extrudedHeight = extrudedHeight;
  result._shadowVolume = shadowVolume;
  result._offsetAttribute =
    offsetAttribute === -1 ? undefined : offsetAttribute;

  return result;
};

/**
 * Computes the bounding rectangle based on the provided options
 *
 * @param {Object} options Object with the following properties:
 * @param {Rectangle} options.rectangle A cartographic rectangle with north, south, east and west properties in radians.
 * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle lies.
 * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
 * @param {Number} [options.rotation=0.0] The rotation of the rectangle, in radians. A positive rotation is counter-clockwise.
 * @param {Rectangle} [result] An object in which to store the result.
 *
 * @returns {Rectangle} The result rectangle
 */
RectangleGeometry.computeRectangle = function (options, result) {
  options = defaultValue(options, defaultValue.EMPTY_OBJECT);

  var rectangle = options.rectangle;

  //>>includeStart('debug', pragmas.debug);
  Check.typeOf.object("rectangle", rectangle);
  Rectangle.validate(rectangle);
  if (rectangle.north < rectangle.south) {
    throw new DeveloperError(
      "options.rectangle.north must be greater than or equal to options.rectangle.south"
    );
  }
  //>>includeEnd('debug');

  var granularity = defaultValue(
    options.granularity,
    CesiumMath.RADIANS_PER_DEGREE
  );
  var ellipsoid = defaultValue(options.ellipsoid, Ellipsoid.WGS84);
  var rotation = defaultValue(options.rotation, 0.0);

  return computeRectangle(rectangle, granularity, rotation, ellipsoid, result);
};

var tangentRotationMatrixScratch = new Matrix3();
var quaternionScratch = new Quaternion();
var centerScratch = new Cartographic();
/**
 * Computes the geometric representation of a rectangle, including its vertices, indices, and a bounding sphere.
 *
 * @param {RectangleGeometry} rectangleGeometry A description of the rectangle.
 * @returns {Geometry|undefined} The computed vertices and indices.
 *
 * @exception {DeveloperError} Rotated rectangle is invalid.
 */
RectangleGeometry.createGeometry = function (rectangleGeometry) {
  if (
    CesiumMath.equalsEpsilon(
      rectangleGeometry._rectangle.north,
      rectangleGeometry._rectangle.south,
      CesiumMath.EPSILON10
    ) ||
    CesiumMath.equalsEpsilon(
      rectangleGeometry._rectangle.east,
      rectangleGeometry._rectangle.west,
      CesiumMath.EPSILON10
    )
  ) {
    return undefined;
  }

  var rectangle = rectangleGeometry._rectangle;
  var ellipsoid = rectangleGeometry._ellipsoid;
  var rotation = rectangleGeometry._rotation;
  var stRotation = rectangleGeometry._stRotation;
  var vertexFormat = rectangleGeometry._vertexFormat;

  var computedOptions = RectangleGeometryLibrary.computeOptions(
    rectangle,
    rectangleGeometry._granularity,
    rotation,
    stRotation,
    rectangleScratch,
    nwScratch,
    stNwScratch
  );

  var tangentRotationMatrix = tangentRotationMatrixScratch;
  if (stRotation !== 0 || rotation !== 0) {
    var center = Rectangle.center(rectangle, centerScratch);
    var axis = ellipsoid.geodeticSurfaceNormalCartographic(center, v1Scratch);
    Quaternion.fromAxisAngle(axis, -stRotation, quaternionScratch);
    Matrix3.fromQuaternion(quaternionScratch, tangentRotationMatrix);
  } else {
    Matrix3.clone(Matrix3.IDENTITY, tangentRotationMatrix);
  }

  var surfaceHeight = rectangleGeometry._surfaceHeight;
  var extrudedHeight = rectangleGeometry._extrudedHeight;
  var extrude = !CesiumMath.equalsEpsilon(
    surfaceHeight,
    extrudedHeight,
    0,
    CesiumMath.EPSILON2
  );

  computedOptions.lonScalar = 1.0 / rectangleGeometry._rectangle.width;
  computedOptions.latScalar = 1.0 / rectangleGeometry._rectangle.height;
  computedOptions.tangentRotationMatrix = tangentRotationMatrix;

  var geometry;
  var boundingSphere;
  rectangle = rectangleGeometry._rectangle;
  if (extrude) {
    geometry = constructExtrudedRectangle(rectangleGeometry, computedOptions);
    var topBS = BoundingSphere.fromRectangle3D(
      rectangle,
      ellipsoid,
      surfaceHeight,
      topBoundingSphere
    );
    var bottomBS = BoundingSphere.fromRectangle3D(
      rectangle,
      ellipsoid,
      extrudedHeight,
      bottomBoundingSphere
    );
    boundingSphere = BoundingSphere.union(topBS, bottomBS);
  } else {
    geometry = constructRectangle(rectangleGeometry, computedOptions);
    geometry.attributes.position.values = PolygonPipeline.scaleToGeodeticHeight(
      geometry.attributes.position.values,
      surfaceHeight,
      ellipsoid,
      false
    );

    if (defined(rectangleGeometry._offsetAttribute)) {
      var length = geometry.attributes.position.values.length;
      var applyOffset = new Uint8Array(length / 3);
      var offsetValue =
        rectangleGeometry._offsetAttribute === GeometryOffsetAttribute.NONE
          ? 0
          : 1;
      arrayFill(applyOffset, offsetValue);
      geometry.attributes.applyOffset = new GeometryAttribute({
        componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
        componentsPerAttribute: 1,
        values: applyOffset,
      });
    }

    boundingSphere = BoundingSphere.fromRectangle3D(
      rectangle,
      ellipsoid,
      surfaceHeight
    );
  }

  if (!vertexFormat.position) {
    delete geometry.attributes.position;
  }

  return new Geometry({
    attributes: geometry.attributes,
    indices: geometry.indices,
    primitiveType: geometry.primitiveType,
    boundingSphere: boundingSphere,
    offsetAttribute: rectangleGeometry._offsetAttribute,
  });
};

/**
 * @private
 */
RectangleGeometry.createShadowVolume = function (
  rectangleGeometry,
  minHeightFunc,
  maxHeightFunc
) {
  var granularity = rectangleGeometry._granularity;
  var ellipsoid = rectangleGeometry._ellipsoid;

  var minHeight = minHeightFunc(granularity, ellipsoid);
  var maxHeight = maxHeightFunc(granularity, ellipsoid);

  return new RectangleGeometry({
    rectangle: rectangleGeometry._rectangle,
    rotation: rectangleGeometry._rotation,
    ellipsoid: ellipsoid,
    stRotation: rectangleGeometry._stRotation,
    granularity: granularity,
    extrudedHeight: maxHeight,
    height: minHeight,
    vertexFormat: VertexFormat.POSITION_ONLY,
    shadowVolume: true,
  });
};

var unrotatedTextureRectangleScratch = new Rectangle();
var points2DScratch = [new Cartesian2(), new Cartesian2(), new Cartesian2()];
var rotation2DScratch = new Matrix2();
var rectangleCenterScratch = new Cartographic();

function textureCoordinateRotationPoints(rectangleGeometry) {
  if (rectangleGeometry._stRotation === 0.0) {
    return [0, 0, 0, 1, 1, 0];
  }

  var rectangle = Rectangle.clone(
    rectangleGeometry._rectangle,
    unrotatedTextureRectangleScratch
  );
  var granularity = rectangleGeometry._granularity;
  var ellipsoid = rectangleGeometry._ellipsoid;

  // Rotate to align the texture coordinates with ENU
  var rotation = rectangleGeometry._rotation - rectangleGeometry._stRotation;

  var unrotatedTextureRectangle = computeRectangle(
    rectangle,
    granularity,
    rotation,
    ellipsoid,
    unrotatedTextureRectangleScratch
  );

  // Assume a computed "east-north" texture coordinate system based on spherical or planar tricks, bounded by `boundingRectangle`.
  // The "desired" texture coordinate system forms an oriented rectangle (un-oriented computed) around the geometry that completely and tightly bounds it.
  // We want to map from the "east-north" texture coordinate system into the "desired" system using a pair of lines (analagous planes in 2D)
  // Compute 3 corners of the "desired" texture coordinate system in "east-north" texture space by the following in cartographic space:
  // - rotate 3 of the corners in unrotatedTextureRectangle by stRotation around the center of the bounding rectangle
  // - apply the "east-north" system's normalization formula to the rotated cartographics, even though this is likely to produce values outside [0-1].
  // This gives us a set of points in the "east-north" texture coordinate system that can be used to map "east-north" texture coordinates to "desired."

  var points2D = points2DScratch;
  points2D[0].x = unrotatedTextureRectangle.west;
  points2D[0].y = unrotatedTextureRectangle.south;

  points2D[1].x = unrotatedTextureRectangle.west;
  points2D[1].y = unrotatedTextureRectangle.north;

  points2D[2].x = unrotatedTextureRectangle.east;
  points2D[2].y = unrotatedTextureRectangle.south;

  var boundingRectangle = rectangleGeometry.rectangle;
  var toDesiredInComputed = Matrix2.fromRotation(
    rectangleGeometry._stRotation,
    rotation2DScratch
  );
  var boundingRectangleCenter = Rectangle.center(
    boundingRectangle,
    rectangleCenterScratch
  );

  for (var i = 0; i < 3; ++i) {
    var point2D = points2D[i];
    point2D.x -= boundingRectangleCenter.longitude;
    point2D.y -= boundingRectangleCenter.latitude;
    Matrix2.multiplyByVector(toDesiredInComputed, point2D, point2D);
    point2D.x += boundingRectangleCenter.longitude;
    point2D.y += boundingRectangleCenter.latitude;

    // Convert point into east-north texture coordinate space
    point2D.x = (point2D.x - boundingRectangle.west) / boundingRectangle.width;
    point2D.y =
      (point2D.y - boundingRectangle.south) / boundingRectangle.height;
  }

  var minXYCorner = points2D[0];
  var maxYCorner = points2D[1];
  var maxXCorner = points2D[2];
  var result = new Array(6);
  Cartesian2.pack(minXYCorner, result);
  Cartesian2.pack(maxYCorner, result, 2);
  Cartesian2.pack(maxXCorner, result, 4);
  return result;
}

Object.defineProperties(RectangleGeometry.prototype, {
  /**
   * @private
   */
  rectangle: {
    get: function () {
      if (!defined(this._rotatedRectangle)) {
        this._rotatedRectangle = computeRectangle(
          this._rectangle,
          this._granularity,
          this._rotation,
          this._ellipsoid
        );
      }
      return this._rotatedRectangle;
    },
  },
  /**
   * For remapping texture coordinates when rendering RectangleGeometries as GroundPrimitives.
   * This version permits skew in textures by computing offsets directly in cartographic space and
   * more accurately approximates rendering RectangleGeometries with height as standard Primitives.
   * @see Geometry#_textureCoordinateRotationPoints
   * @private
   */
  textureCoordinateRotationPoints: {
    get: function () {
      if (!defined(this._textureCoordinateRotationPoints)) {
        this._textureCoordinateRotationPoints = textureCoordinateRotationPoints(
          this
        );
      }
      return this._textureCoordinateRotationPoints;
    },
  },
});
export default RectangleGeometry;