Newer
Older
casic-smartcity-well-front / static / Cesium / Shaders / SkyAtmosphereCommon.glsl
[wangxitong] on 8 Jul 2021 11 KB mars3d总览
/**
 * @license
 * Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com)
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * * Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright notice,
 *   this list of conditions and the following disclaimer in the documentation
 *   and/or other materials provided with the distribution.
 * * Neither the name of the project nor the names of its contributors may be
 *   used to endorse or promote products derived from this software without
 *   specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Modifications made by Cesium GS, Inc.
 */

 // Code:  http://sponeil.net/
 // GPU Gems 2 Article:  https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html

const float Kr = 0.0025;
const float Kr4PI = Kr * 4.0 * czm_pi;
const float Km = 0.0015;
const float Km4PI = Km * 4.0 * czm_pi;
const float ESun = 15.0;
const float KmESun = Km * ESun;
const float KrESun = Kr * ESun;
const vec3 InvWavelength = vec3(
    5.60204474633241,  // Red = 1.0 / Math.pow(0.650, 4.0)
    9.473284437923038, // Green = 1.0 / Math.pow(0.570, 4.0)
    19.643802610477206); // Blue = 1.0 / Math.pow(0.475, 4.0)
const float rayleighScaleDepth = 0.25;

const int nSamples = 2;
const float fSamples = 2.0;

const float g = -0.95;
const float g2 = g * g;

#ifdef COLOR_CORRECT
uniform vec3 u_hsbShift; // Hue, saturation, brightness
#endif

uniform vec3 u_radiiAndDynamicAtmosphereColor; // outer radius, inner radius, dynamic atmosphere color flag

float scale(float cosAngle)
{
    float x = 1.0 - cosAngle;
    return rayleighScaleDepth  * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}

vec3 getLightDirection(vec3 positionWC)
{
    float lightEnum = u_radiiAndDynamicAtmosphereColor.z;
    vec3 lightDirection =
        positionWC * float(lightEnum == 0.0) +
        czm_lightDirectionWC * float(lightEnum == 1.0) +
        czm_sunDirectionWC * float(lightEnum == 2.0);
    return normalize(lightDirection);
}

void calculateRayScatteringFromSpace(in vec3 positionWC, in vec3 ray, in float innerRadius, in float outerRadius, inout float far, out vec3 start, out float startOffset)
{
    // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
    float cameraHeight = length(positionWC);
    float B = 2.0 * dot(positionWC, ray);
    float C = cameraHeight * cameraHeight - outerRadius * outerRadius;
    float det = max(0.0, B * B - 4.0 * C);
    float near = 0.5 * (-B - sqrt(det));

    // Calculate the ray's starting position, then calculate its scattering offset
    start = positionWC + ray * near;
    far -= near;
    float startAngle = dot(ray, start) / outerRadius;
    float startDepth = exp(-1.0 / rayleighScaleDepth);
    startOffset = startDepth * scale(startAngle);
}

void calculateRayScatteringFromGround(in vec3 positionWC, in vec3 ray, in float atmosphereScale, in float innerRadius, out vec3 start, out float startOffset)
{
    // Calculate the ray's starting position, then calculate its scattering offset
    float cameraHeight = length(positionWC);
    start = positionWC;
    float height = length(start);
    float depth = exp((atmosphereScale / rayleighScaleDepth ) * (innerRadius - cameraHeight));
    float startAngle = dot(ray, start) / height;
    startOffset = depth*scale(startAngle);
}

czm_raySegment rayEllipsoidIntersection(czm_ray ray, vec3 inverseRadii)
{
    vec3 o = inverseRadii * (czm_inverseView * vec4(ray.origin, 1.0)).xyz;
    vec3 d = inverseRadii * (czm_inverseView * vec4(ray.direction, 0.0)).xyz;

    float a = dot(d, d);
    float b = dot(d, o);
    float c = dot(o, o) - 1.0;
    float discriminant = b * b - a * c;
    if (discriminant < 0.0)
    {
        return czm_emptyRaySegment;
    }
    discriminant = sqrt(discriminant);
    float t1 = (-b - discriminant) / a;
    float t2 = (-b + discriminant) / a;

    if (t1 < 0.0 && t2 < 0.0)
    {
        return czm_emptyRaySegment;
    }

    if (t1 < 0.0 && t2 >= 0.0)
    {
        t1 = 0.0;
    }

    return czm_raySegment(t1, t2);
}

vec3 getAdjustedPosition(vec3 positionWC, float innerRadius)
{
  // Adjust the camera position so that atmosphere color looks the same wherever the eye height is the same
  float cameraHeight = czm_eyeHeight + innerRadius;
  return normalize(positionWC) * cameraHeight;
}

vec3 getTranslucentPosition(vec3 positionWC, vec3 outerPositionWC, float innerRadius, out bool intersectsEllipsoid)
{
    vec3 directionWC = normalize(outerPositionWC - positionWC);
    vec3 directionEC = czm_viewRotation * directionWC;
    czm_ray viewRay = czm_ray(vec3(0.0), directionEC);
    czm_raySegment raySegment = rayEllipsoidIntersection(viewRay, czm_ellipsoidInverseRadii);
    intersectsEllipsoid = raySegment.start >= 0.0;

    if (intersectsEllipsoid)
    {
        return positionWC + raySegment.stop * directionWC;
    }

    return getAdjustedPosition(positionWC, innerRadius);
}

void calculateMieColorAndRayleighColor(vec3 outerPositionWC, out vec3 mieColor, out vec3 rayleighColor)
{
    // Unpack attributes
    float outerRadius = u_radiiAndDynamicAtmosphereColor.x;
    float innerRadius = u_radiiAndDynamicAtmosphereColor.y;

#ifdef GLOBE_TRANSLUCENT
    bool intersectsEllipsoid = false;
    vec3 startPositionWC = getTranslucentPosition(czm_viewerPositionWC, outerPositionWC, innerRadius, intersectsEllipsoid);
#else
    vec3 startPositionWC = getAdjustedPosition(czm_viewerPositionWC, innerRadius);
#endif

    vec3 lightDirection = getLightDirection(startPositionWC);

    // Get the ray from the start position to the outer position and its length (which is the far point of the ray passing through the atmosphere)
    vec3 ray = outerPositionWC - startPositionWC;
    float far = length(ray);
    ray /= far;

    float atmosphereScale = 1.0 / (outerRadius - innerRadius);

    vec3 start;
    float startOffset;

#ifdef SKY_FROM_SPACE
#ifdef GLOBE_TRANSLUCENT
    if (intersectsEllipsoid)
    {
        calculateRayScatteringFromGround(startPositionWC, ray, atmosphereScale, innerRadius, start, startOffset);
    }
    else
    {
        calculateRayScatteringFromSpace(startPositionWC, ray, innerRadius, outerRadius, far, start, startOffset);
    }
#else
    calculateRayScatteringFromSpace(startPositionWC, ray, innerRadius, outerRadius, far, start, startOffset);
#endif
#else
    calculateRayScatteringFromGround(startPositionWC, ray, atmosphereScale, innerRadius, start, startOffset);
#endif

    // Initialize the scattering loop variables
    float sampleLength = far / fSamples;
    float scaledLength = sampleLength * atmosphereScale;
    vec3 sampleRay = ray * sampleLength;
    vec3 samplePoint = start + sampleRay * 0.5;

    // Now loop through the sample rays
    vec3 frontColor = vec3(0.0, 0.0, 0.0);

    for (int i = 0; i<nSamples; i++)
    {
        float height = length(samplePoint);
        float depth = exp((atmosphereScale / rayleighScaleDepth ) * (innerRadius - height));
        float fLightAngle = dot(lightDirection, samplePoint) / height;
        float fCameraAngle = dot(ray, samplePoint) / height;
        float fScatter = (startOffset + depth*(scale(fLightAngle) - scale(fCameraAngle)));
        vec3 attenuate = exp(-fScatter * (InvWavelength * Kr4PI + Km4PI));
        frontColor += attenuate * (depth * scaledLength);
        samplePoint += sampleRay;
    }

    // Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
    mieColor = frontColor * KmESun;
    rayleighColor = frontColor * (InvWavelength * KrESun);

    // Cap mie and rayleigh colors to prevent NaNs when vertex interpolation happens
    mieColor = min(mieColor, vec3(10000000.0));
    rayleighColor = min(rayleighColor, vec3(10000000.0));
}

vec4 calculateFinalColor(vec3 positionWC, vec3 toCamera, vec3 lightDirection, vec3 mieColor, vec3 rayleighColor)
{
    // Extra normalize added for Android
    float cosAngle = dot(lightDirection, normalize(toCamera)) / length(toCamera);
    float rayleighPhase = 0.75 * (1.0 + cosAngle * cosAngle);
    float miePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + cosAngle * cosAngle) / pow(1.0 + g2 - 2.0 * g * cosAngle, 1.5);

    vec3 rgb = rayleighPhase * rayleighColor + miePhase * mieColor;

    const float exposure = 2.0;
    vec3 rgbExposure = vec3(1.0) - exp(-exposure * rgb);

#ifndef HDR
    rgb = rgbExposure;
#endif

#ifdef COLOR_CORRECT
    // Convert rgb color to hsb
    vec3 hsb = czm_RGBToHSB(rgb);
    // Perform hsb shift
    hsb.x += u_hsbShift.x; // hue
    hsb.y = clamp(hsb.y + u_hsbShift.y, 0.0, 1.0); // saturation
    hsb.z = hsb.z > czm_epsilon7 ? hsb.z + u_hsbShift.z : 0.0; // brightness
    // Convert shifted hsb back to rgb
    rgb = czm_HSBToRGB(hsb);
#endif

    float outerRadius = u_radiiAndDynamicAtmosphereColor.x;
    float innerRadius = u_radiiAndDynamicAtmosphereColor.y;
    float lightEnum = u_radiiAndDynamicAtmosphereColor.z;

    float cameraHeight = czm_eyeHeight + innerRadius;

    // Alter alpha based on how close the viewer is to the ground (1.0 = on ground, 0.0 = at edge of atmosphere)
    float atmosphereAlpha = clamp((outerRadius - cameraHeight) / (outerRadius - innerRadius), 0.0, 1.0);

    // Alter alpha based on time of day (0.0 = night , 1.0 = day)
    float nightAlpha = (lightEnum != 0.0) ? clamp(dot(normalize(positionWC), lightDirection), 0.0, 1.0) : 1.0;
    atmosphereAlpha *= pow(nightAlpha, 0.5);

    vec4 finalColor = vec4(rgb, mix(clamp(rgbExposure.b, 0.0, 1.0), 1.0, atmosphereAlpha) * smoothstep(0.0, 1.0, czm_morphTime));

    if (mieColor.b > 1.0)
    {
        // Fade atmosphere below the ellipsoid. As the camera zooms further away from the ellipsoid draw
        // a larger atmosphere ring to cover empty space of lower LOD globe tiles.
        float strength = mieColor.b;
        float minDistance = outerRadius;
        float maxDistance = outerRadius * 3.0;
        float maxStrengthLerp = 1.0 - clamp((maxDistance - cameraHeight) / (maxDistance - minDistance), 0.0, 1.0);
        float maxStrength = mix(100.0, 10000.0, maxStrengthLerp);
        strength = min(strength, maxStrength);
        float alpha = 1.0 - (strength / maxStrength);
        finalColor.a = alpha;
    }

    return finalColor;
}