Newer
Older
casic-smartcity-well-front / static / Cesium / Workers / GeometryAttribute-abbafb10.js
[wangxitong] on 8 Jul 2021 50 KB mars3d总览
/* This file is automatically rebuilt by the Cesium build process. */
define(['exports', './Cartesian2-ea36f114', './Check-c23b5bd5', './when-9f8cafad', './Transforms-0a60c469', './WebGLConstants-daaa9be0'], function (exports, Cartesian2, Check, when, Transforms, WebGLConstants) { 'use strict';

  /**
   * @private
   */
  var GeometryType = {
    NONE: 0,
    TRIANGLES: 1,
    LINES: 2,
    POLYLINES: 3,
  };
  var GeometryType$1 = Object.freeze(GeometryType);

  /**
   * A 2x2 matrix, indexable as a column-major order array.
   * Constructor parameters are in row-major order for code readability.
   * @alias Matrix2
   * @constructor
   * @implements {ArrayLike<number>}
   *
   * @param {Number} [column0Row0=0.0] The value for column 0, row 0.
   * @param {Number} [column1Row0=0.0] The value for column 1, row 0.
   * @param {Number} [column0Row1=0.0] The value for column 0, row 1.
   * @param {Number} [column1Row1=0.0] The value for column 1, row 1.
   *
   * @see Matrix2.fromColumnMajorArray
   * @see Matrix2.fromRowMajorArray
   * @see Matrix2.fromScale
   * @see Matrix2.fromUniformScale
   * @see Matrix3
   * @see Matrix4
   */
  function Matrix2(column0Row0, column1Row0, column0Row1, column1Row1) {
    this[0] = when.defaultValue(column0Row0, 0.0);
    this[1] = when.defaultValue(column0Row1, 0.0);
    this[2] = when.defaultValue(column1Row0, 0.0);
    this[3] = when.defaultValue(column1Row1, 0.0);
  }

  /**
   * The number of elements used to pack the object into an array.
   * @type {Number}
   */
  Matrix2.packedLength = 4;

  /**
   * Stores the provided instance into the provided array.
   *
   * @param {Matrix2} value The value to pack.
   * @param {Number[]} array The array to pack into.
   * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
   *
   * @returns {Number[]} The array that was packed into
   */
  Matrix2.pack = function (value, array, startingIndex) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("value", value);
    Check.Check.defined("array", array);
    //>>includeEnd('debug');

    startingIndex = when.defaultValue(startingIndex, 0);

    array[startingIndex++] = value[0];
    array[startingIndex++] = value[1];
    array[startingIndex++] = value[2];
    array[startingIndex++] = value[3];

    return array;
  };

  /**
   * Retrieves an instance from a packed array.
   *
   * @param {Number[]} array The packed array.
   * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
   * @param {Matrix2} [result] The object into which to store the result.
   * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
   */
  Matrix2.unpack = function (array, startingIndex, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.defined("array", array);
    //>>includeEnd('debug');

    startingIndex = when.defaultValue(startingIndex, 0);

    if (!when.defined(result)) {
      result = new Matrix2();
    }

    result[0] = array[startingIndex++];
    result[1] = array[startingIndex++];
    result[2] = array[startingIndex++];
    result[3] = array[startingIndex++];
    return result;
  };

  /**
   * Duplicates a Matrix2 instance.
   *
   * @param {Matrix2} matrix The matrix to duplicate.
   * @param {Matrix2} [result] The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. (Returns undefined if matrix is undefined)
   */
  Matrix2.clone = function (matrix, result) {
    if (!when.defined(matrix)) {
      return undefined;
    }
    if (!when.defined(result)) {
      return new Matrix2(matrix[0], matrix[2], matrix[1], matrix[3]);
    }
    result[0] = matrix[0];
    result[1] = matrix[1];
    result[2] = matrix[2];
    result[3] = matrix[3];
    return result;
  };

  /**
   * Creates a Matrix2 from 4 consecutive elements in an array.
   *
   * @param {Number[]} array The array whose 4 consecutive elements correspond to the positions of the matrix.  Assumes column-major order.
   * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix.
   * @param {Matrix2} [result] The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
   *
   * @example
   * // Create the Matrix2:
   * // [1.0, 2.0]
   * // [1.0, 2.0]
   *
   * var v = [1.0, 1.0, 2.0, 2.0];
   * var m = Cesium.Matrix2.fromArray(v);
   *
   * // Create same Matrix2 with using an offset into an array
   * var v2 = [0.0, 0.0, 1.0, 1.0, 2.0, 2.0];
   * var m2 = Cesium.Matrix2.fromArray(v2, 2);
   */
  Matrix2.fromArray = function (array, startingIndex, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.defined("array", array);
    //>>includeEnd('debug');

    startingIndex = when.defaultValue(startingIndex, 0);

    if (!when.defined(result)) {
      result = new Matrix2();
    }

    result[0] = array[startingIndex];
    result[1] = array[startingIndex + 1];
    result[2] = array[startingIndex + 2];
    result[3] = array[startingIndex + 3];
    return result;
  };

  /**
   * Creates a Matrix2 instance from a column-major order array.
   *
   * @param {Number[]} values The column-major order array.
   * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
   * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
   */
  Matrix2.fromColumnMajorArray = function (values, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.defined("values", values);
    //>>includeEnd('debug');

    return Matrix2.clone(values, result);
  };

  /**
   * Creates a Matrix2 instance from a row-major order array.
   * The resulting matrix will be in column-major order.
   *
   * @param {Number[]} values The row-major order array.
   * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
   * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
   */
  Matrix2.fromRowMajorArray = function (values, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.defined("values", values);
    //>>includeEnd('debug');

    if (!when.defined(result)) {
      return new Matrix2(values[0], values[1], values[2], values[3]);
    }
    result[0] = values[0];
    result[1] = values[2];
    result[2] = values[1];
    result[3] = values[3];
    return result;
  };

  /**
   * Computes a Matrix2 instance representing a non-uniform scale.
   *
   * @param {Cartesian2} scale The x and y scale factors.
   * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
   * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
   *
   * @example
   * // Creates
   * //   [7.0, 0.0]
   * //   [0.0, 8.0]
   * var m = Cesium.Matrix2.fromScale(new Cesium.Cartesian2(7.0, 8.0));
   */
  Matrix2.fromScale = function (scale, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("scale", scale);
    //>>includeEnd('debug');

    if (!when.defined(result)) {
      return new Matrix2(scale.x, 0.0, 0.0, scale.y);
    }

    result[0] = scale.x;
    result[1] = 0.0;
    result[2] = 0.0;
    result[3] = scale.y;
    return result;
  };

  /**
   * Computes a Matrix2 instance representing a uniform scale.
   *
   * @param {Number} scale The uniform scale factor.
   * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
   * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
   *
   * @example
   * // Creates
   * //   [2.0, 0.0]
   * //   [0.0, 2.0]
   * var m = Cesium.Matrix2.fromUniformScale(2.0);
   */
  Matrix2.fromUniformScale = function (scale, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.number("scale", scale);
    //>>includeEnd('debug');

    if (!when.defined(result)) {
      return new Matrix2(scale, 0.0, 0.0, scale);
    }

    result[0] = scale;
    result[1] = 0.0;
    result[2] = 0.0;
    result[3] = scale;
    return result;
  };

  /**
   * Creates a rotation matrix.
   *
   * @param {Number} angle The angle, in radians, of the rotation.  Positive angles are counterclockwise.
   * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
   * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
   *
   * @example
   * // Rotate a point 45 degrees counterclockwise.
   * var p = new Cesium.Cartesian2(5, 6);
   * var m = Cesium.Matrix2.fromRotation(Cesium.Math.toRadians(45.0));
   * var rotated = Cesium.Matrix2.multiplyByVector(m, p, new Cesium.Cartesian2());
   */
  Matrix2.fromRotation = function (angle, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.number("angle", angle);
    //>>includeEnd('debug');

    var cosAngle = Math.cos(angle);
    var sinAngle = Math.sin(angle);

    if (!when.defined(result)) {
      return new Matrix2(cosAngle, -sinAngle, sinAngle, cosAngle);
    }
    result[0] = cosAngle;
    result[1] = sinAngle;
    result[2] = -sinAngle;
    result[3] = cosAngle;
    return result;
  };

  /**
   * Creates an Array from the provided Matrix2 instance.
   * The array will be in column-major order.
   *
   * @param {Matrix2} matrix The matrix to use..
   * @param {Number[]} [result] The Array onto which to store the result.
   * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided.
   */
  Matrix2.toArray = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);
    //>>includeEnd('debug');

    if (!when.defined(result)) {
      return [matrix[0], matrix[1], matrix[2], matrix[3]];
    }
    result[0] = matrix[0];
    result[1] = matrix[1];
    result[2] = matrix[2];
    result[3] = matrix[3];
    return result;
  };

  /**
   * Computes the array index of the element at the provided row and column.
   *
   * @param {Number} row The zero-based index of the row.
   * @param {Number} column The zero-based index of the column.
   * @returns {Number} The index of the element at the provided row and column.
   *
   * @exception {DeveloperError} row must be 0 or 1.
   * @exception {DeveloperError} column must be 0 or 1.
   *
   * @example
   * var myMatrix = new Cesium.Matrix2();
   * var column1Row0Index = Cesium.Matrix2.getElementIndex(1, 0);
   * var column1Row0 = myMatrix[column1Row0Index]
   * myMatrix[column1Row0Index] = 10.0;
   */
  Matrix2.getElementIndex = function (column, row) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.number.greaterThanOrEquals("row", row, 0);
    Check.Check.typeOf.number.lessThanOrEquals("row", row, 1);

    Check.Check.typeOf.number.greaterThanOrEquals("column", column, 0);
    Check.Check.typeOf.number.lessThanOrEquals("column", column, 1);
    //>>includeEnd('debug');

    return column * 2 + row;
  };

  /**
   * Retrieves a copy of the matrix column at the provided index as a Cartesian2 instance.
   *
   * @param {Matrix2} matrix The matrix to use.
   * @param {Number} index The zero-based index of the column to retrieve.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   *
   * @exception {DeveloperError} index must be 0 or 1.
   */
  Matrix2.getColumn = function (matrix, index, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);

    Check.Check.typeOf.number.greaterThanOrEquals("index", index, 0);
    Check.Check.typeOf.number.lessThanOrEquals("index", index, 1);

    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    var startIndex = index * 2;
    var x = matrix[startIndex];
    var y = matrix[startIndex + 1];

    result.x = x;
    result.y = y;
    return result;
  };

  /**
   * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian2 instance.
   *
   * @param {Matrix2} matrix The matrix to use.
   * @param {Number} index The zero-based index of the column to set.
   * @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified column.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   *
   * @exception {DeveloperError} index must be 0 or 1.
   */
  Matrix2.setColumn = function (matrix, index, cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);

    Check.Check.typeOf.number.greaterThanOrEquals("index", index, 0);
    Check.Check.typeOf.number.lessThanOrEquals("index", index, 1);

    Check.Check.typeOf.object("cartesian", cartesian);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    result = Matrix2.clone(matrix, result);
    var startIndex = index * 2;
    result[startIndex] = cartesian.x;
    result[startIndex + 1] = cartesian.y;
    return result;
  };

  /**
   * Retrieves a copy of the matrix row at the provided index as a Cartesian2 instance.
   *
   * @param {Matrix2} matrix The matrix to use.
   * @param {Number} index The zero-based index of the row to retrieve.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   *
   * @exception {DeveloperError} index must be 0 or 1.
   */
  Matrix2.getRow = function (matrix, index, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);

    Check.Check.typeOf.number.greaterThanOrEquals("index", index, 0);
    Check.Check.typeOf.number.lessThanOrEquals("index", index, 1);

    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    var x = matrix[index];
    var y = matrix[index + 2];

    result.x = x;
    result.y = y;
    return result;
  };

  /**
   * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian2 instance.
   *
   * @param {Matrix2} matrix The matrix to use.
   * @param {Number} index The zero-based index of the row to set.
   * @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified row.
   * @param {Matrix2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   *
   * @exception {DeveloperError} index must be 0 or 1.
   */
  Matrix2.setRow = function (matrix, index, cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);

    Check.Check.typeOf.number.greaterThanOrEquals("index", index, 0);
    Check.Check.typeOf.number.lessThanOrEquals("index", index, 1);

    Check.Check.typeOf.object("cartesian", cartesian);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    result = Matrix2.clone(matrix, result);
    result[index] = cartesian.x;
    result[index + 2] = cartesian.y;
    return result;
  };

  var scratchColumn = new Cartesian2.Cartesian2();

  /**
   * Extracts the non-uniform scale assuming the matrix is an affine transformation.
   *
   * @param {Matrix2} matrix The matrix.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Matrix2.getScale = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    result.x = Cartesian2.Cartesian2.magnitude(
      Cartesian2.Cartesian2.fromElements(matrix[0], matrix[1], scratchColumn)
    );
    result.y = Cartesian2.Cartesian2.magnitude(
      Cartesian2.Cartesian2.fromElements(matrix[2], matrix[3], scratchColumn)
    );
    return result;
  };

  var scratchScale = new Cartesian2.Cartesian2();

  /**
   * Computes the maximum scale assuming the matrix is an affine transformation.
   * The maximum scale is the maximum length of the column vectors.
   *
   * @param {Matrix2} matrix The matrix.
   * @returns {Number} The maximum scale.
   */
  Matrix2.getMaximumScale = function (matrix) {
    Matrix2.getScale(matrix, scratchScale);
    return Cartesian2.Cartesian2.maximumComponent(scratchScale);
  };

  /**
   * Computes the product of two matrices.
   *
   * @param {Matrix2} left The first matrix.
   * @param {Matrix2} right The second matrix.
   * @param {Matrix2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   */
  Matrix2.multiply = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("left", left);
    Check.Check.typeOf.object("right", right);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    var column0Row0 = left[0] * right[0] + left[2] * right[1];
    var column1Row0 = left[0] * right[2] + left[2] * right[3];
    var column0Row1 = left[1] * right[0] + left[3] * right[1];
    var column1Row1 = left[1] * right[2] + left[3] * right[3];

    result[0] = column0Row0;
    result[1] = column0Row1;
    result[2] = column1Row0;
    result[3] = column1Row1;
    return result;
  };

  /**
   * Computes the sum of two matrices.
   *
   * @param {Matrix2} left The first matrix.
   * @param {Matrix2} right The second matrix.
   * @param {Matrix2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   */
  Matrix2.add = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("left", left);
    Check.Check.typeOf.object("right", right);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    result[0] = left[0] + right[0];
    result[1] = left[1] + right[1];
    result[2] = left[2] + right[2];
    result[3] = left[3] + right[3];
    return result;
  };

  /**
   * Computes the difference of two matrices.
   *
   * @param {Matrix2} left The first matrix.
   * @param {Matrix2} right The second matrix.
   * @param {Matrix2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   */
  Matrix2.subtract = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("left", left);
    Check.Check.typeOf.object("right", right);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    result[0] = left[0] - right[0];
    result[1] = left[1] - right[1];
    result[2] = left[2] - right[2];
    result[3] = left[3] - right[3];
    return result;
  };

  /**
   * Computes the product of a matrix and a column vector.
   *
   * @param {Matrix2} matrix The matrix.
   * @param {Cartesian2} cartesian The column.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Matrix2.multiplyByVector = function (matrix, cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);
    Check.Check.typeOf.object("cartesian", cartesian);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    var x = matrix[0] * cartesian.x + matrix[2] * cartesian.y;
    var y = matrix[1] * cartesian.x + matrix[3] * cartesian.y;

    result.x = x;
    result.y = y;
    return result;
  };

  /**
   * Computes the product of a matrix and a scalar.
   *
   * @param {Matrix2} matrix The matrix.
   * @param {Number} scalar The number to multiply by.
   * @param {Matrix2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   */
  Matrix2.multiplyByScalar = function (matrix, scalar, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);
    Check.Check.typeOf.number("scalar", scalar);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    result[0] = matrix[0] * scalar;
    result[1] = matrix[1] * scalar;
    result[2] = matrix[2] * scalar;
    result[3] = matrix[3] * scalar;
    return result;
  };

  /**
   * Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix.
   *
   * @param {Matrix2} matrix The matrix on the left-hand side.
   * @param {Cartesian2} scale The non-uniform scale on the right-hand side.
   * @param {Matrix2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   *
   *
   * @example
   * // Instead of Cesium.Matrix2.multiply(m, Cesium.Matrix2.fromScale(scale), m);
   * Cesium.Matrix2.multiplyByScale(m, scale, m);
   *
   * @see Matrix2.fromScale
   * @see Matrix2.multiplyByUniformScale
   */
  Matrix2.multiplyByScale = function (matrix, scale, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);
    Check.Check.typeOf.object("scale", scale);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    result[0] = matrix[0] * scale.x;
    result[1] = matrix[1] * scale.x;
    result[2] = matrix[2] * scale.y;
    result[3] = matrix[3] * scale.y;
    return result;
  };

  /**
   * Creates a negated copy of the provided matrix.
   *
   * @param {Matrix2} matrix The matrix to negate.
   * @param {Matrix2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   */
  Matrix2.negate = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    result[0] = -matrix[0];
    result[1] = -matrix[1];
    result[2] = -matrix[2];
    result[3] = -matrix[3];
    return result;
  };

  /**
   * Computes the transpose of the provided matrix.
   *
   * @param {Matrix2} matrix The matrix to transpose.
   * @param {Matrix2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   */
  Matrix2.transpose = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    var column0Row0 = matrix[0];
    var column0Row1 = matrix[2];
    var column1Row0 = matrix[1];
    var column1Row1 = matrix[3];

    result[0] = column0Row0;
    result[1] = column0Row1;
    result[2] = column1Row0;
    result[3] = column1Row1;
    return result;
  };

  /**
   * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements.
   *
   * @param {Matrix2} matrix The matrix with signed elements.
   * @param {Matrix2} result The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter.
   */
  Matrix2.abs = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("matrix", matrix);
    Check.Check.typeOf.object("result", result);
    //>>includeEnd('debug');

    result[0] = Math.abs(matrix[0]);
    result[1] = Math.abs(matrix[1]);
    result[2] = Math.abs(matrix[2]);
    result[3] = Math.abs(matrix[3]);

    return result;
  };

  /**
   * Compares the provided matrices componentwise and returns
   * <code>true</code> if they are equal, <code>false</code> otherwise.
   *
   * @param {Matrix2} [left] The first matrix.
   * @param {Matrix2} [right] The second matrix.
   * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
   */
  Matrix2.equals = function (left, right) {
    return (
      left === right ||
      (when.defined(left) &&
        when.defined(right) &&
        left[0] === right[0] &&
        left[1] === right[1] &&
        left[2] === right[2] &&
        left[3] === right[3])
    );
  };

  /**
   * @private
   */
  Matrix2.equalsArray = function (matrix, array, offset) {
    return (
      matrix[0] === array[offset] &&
      matrix[1] === array[offset + 1] &&
      matrix[2] === array[offset + 2] &&
      matrix[3] === array[offset + 3]
    );
  };

  /**
   * Compares the provided matrices componentwise and returns
   * <code>true</code> if they are within the provided epsilon,
   * <code>false</code> otherwise.
   *
   * @param {Matrix2} [left] The first matrix.
   * @param {Matrix2} [right] The second matrix.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
   */
  Matrix2.equalsEpsilon = function (left, right, epsilon) {
    epsilon = when.defaultValue(epsilon, 0);
    return (
      left === right ||
      (when.defined(left) &&
        when.defined(right) &&
        Math.abs(left[0] - right[0]) <= epsilon &&
        Math.abs(left[1] - right[1]) <= epsilon &&
        Math.abs(left[2] - right[2]) <= epsilon &&
        Math.abs(left[3] - right[3]) <= epsilon)
    );
  };

  /**
   * An immutable Matrix2 instance initialized to the identity matrix.
   *
   * @type {Matrix2}
   * @constant
   */
  Matrix2.IDENTITY = Object.freeze(new Matrix2(1.0, 0.0, 0.0, 1.0));

  /**
   * An immutable Matrix2 instance initialized to the zero matrix.
   *
   * @type {Matrix2}
   * @constant
   */
  Matrix2.ZERO = Object.freeze(new Matrix2(0.0, 0.0, 0.0, 0.0));

  /**
   * The index into Matrix2 for column 0, row 0.
   *
   * @type {Number}
   * @constant
   *
   * @example
   * var matrix = new Cesium.Matrix2();
   * matrix[Cesium.Matrix2.COLUMN0ROW0] = 5.0; // set column 0, row 0 to 5.0
   */
  Matrix2.COLUMN0ROW0 = 0;

  /**
   * The index into Matrix2 for column 0, row 1.
   *
   * @type {Number}
   * @constant
   *
   * @example
   * var matrix = new Cesium.Matrix2();
   * matrix[Cesium.Matrix2.COLUMN0ROW1] = 5.0; // set column 0, row 1 to 5.0
   */
  Matrix2.COLUMN0ROW1 = 1;

  /**
   * The index into Matrix2 for column 1, row 0.
   *
   * @type {Number}
   * @constant
   *
   * @example
   * var matrix = new Cesium.Matrix2();
   * matrix[Cesium.Matrix2.COLUMN1ROW0] = 5.0; // set column 1, row 0 to 5.0
   */
  Matrix2.COLUMN1ROW0 = 2;

  /**
   * The index into Matrix2 for column 1, row 1.
   *
   * @type {Number}
   * @constant
   *
   * @example
   * var matrix = new Cesium.Matrix2();
   * matrix[Cesium.Matrix2.COLUMN1ROW1] = 5.0; // set column 1, row 1 to 5.0
   */
  Matrix2.COLUMN1ROW1 = 3;

  Object.defineProperties(Matrix2.prototype, {
    /**
     * Gets the number of items in the collection.
     * @memberof Matrix2.prototype
     *
     * @type {Number}
     */
    length: {
      get: function () {
        return Matrix2.packedLength;
      },
    },
  });

  /**
   * Duplicates the provided Matrix2 instance.
   *
   * @param {Matrix2} [result] The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
   */
  Matrix2.prototype.clone = function (result) {
    return Matrix2.clone(this, result);
  };

  /**
   * Compares this matrix to the provided matrix componentwise and returns
   * <code>true</code> if they are equal, <code>false</code> otherwise.
   *
   * @param {Matrix2} [right] The right hand side matrix.
   * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
   */
  Matrix2.prototype.equals = function (right) {
    return Matrix2.equals(this, right);
  };

  /**
   * Compares this matrix to the provided matrix componentwise and returns
   * <code>true</code> if they are within the provided epsilon,
   * <code>false</code> otherwise.
   *
   * @param {Matrix2} [right] The right hand side matrix.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
   */
  Matrix2.prototype.equalsEpsilon = function (right, epsilon) {
    return Matrix2.equalsEpsilon(this, right, epsilon);
  };

  /**
   * Creates a string representing this Matrix with each row being
   * on a separate line and in the format '(column0, column1)'.
   *
   * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1)'.
   */
  Matrix2.prototype.toString = function () {
    return (
      "(" +
      this[0] +
      ", " +
      this[2] +
      ")\n" +
      "(" +
      this[1] +
      ", " +
      this[3] +
      ")"
    );
  };

  /**
   * The type of a geometric primitive, i.e., points, lines, and triangles.
   *
   * @enum {Number}
   */
  var PrimitiveType = {
    /**
     * Points primitive where each vertex (or index) is a separate point.
     *
     * @type {Number}
     * @constant
     */
    POINTS: WebGLConstants.WebGLConstants.POINTS,

    /**
     * Lines primitive where each two vertices (or indices) is a line segment.  Line segments are not necessarily connected.
     *
     * @type {Number}
     * @constant
     */
    LINES: WebGLConstants.WebGLConstants.LINES,

    /**
     * Line loop primitive where each vertex (or index) after the first connects a line to
     * the previous vertex, and the last vertex implicitly connects to the first.
     *
     * @type {Number}
     * @constant
     */
    LINE_LOOP: WebGLConstants.WebGLConstants.LINE_LOOP,

    /**
     * Line strip primitive where each vertex (or index) after the first connects a line to the previous vertex.
     *
     * @type {Number}
     * @constant
     */
    LINE_STRIP: WebGLConstants.WebGLConstants.LINE_STRIP,

    /**
     * Triangles primitive where each three vertices (or indices) is a triangle.  Triangles do not necessarily share edges.
     *
     * @type {Number}
     * @constant
     */
    TRIANGLES: WebGLConstants.WebGLConstants.TRIANGLES,

    /**
     * Triangle strip primitive where each vertex (or index) after the first two connect to
     * the previous two vertices forming a triangle.  For example, this can be used to model a wall.
     *
     * @type {Number}
     * @constant
     */
    TRIANGLE_STRIP: WebGLConstants.WebGLConstants.TRIANGLE_STRIP,

    /**
     * Triangle fan primitive where each vertex (or index) after the first two connect to
     * the previous vertex and the first vertex forming a triangle.  For example, this can be used
     * to model a cone or circle.
     *
     * @type {Number}
     * @constant
     */
    TRIANGLE_FAN: WebGLConstants.WebGLConstants.TRIANGLE_FAN,
  };

  /**
   * @private
   */
  PrimitiveType.validate = function (primitiveType) {
    return (
      primitiveType === PrimitiveType.POINTS ||
      primitiveType === PrimitiveType.LINES ||
      primitiveType === PrimitiveType.LINE_LOOP ||
      primitiveType === PrimitiveType.LINE_STRIP ||
      primitiveType === PrimitiveType.TRIANGLES ||
      primitiveType === PrimitiveType.TRIANGLE_STRIP ||
      primitiveType === PrimitiveType.TRIANGLE_FAN
    );
  };

  var PrimitiveType$1 = Object.freeze(PrimitiveType);

  /**
   * A geometry representation with attributes forming vertices and optional index data
   * defining primitives.  Geometries and an {@link Appearance}, which describes the shading,
   * can be assigned to a {@link Primitive} for visualization.  A <code>Primitive</code> can
   * be created from many heterogeneous - in many cases - geometries for performance.
   * <p>
   * Geometries can be transformed and optimized using functions in {@link GeometryPipeline}.
   * </p>
   *
   * @alias Geometry
   * @constructor
   *
   * @param {Object} options Object with the following properties:
   * @param {GeometryAttributes} options.attributes Attributes, which make up the geometry's vertices.
   * @param {PrimitiveType} [options.primitiveType=PrimitiveType.TRIANGLES] The type of primitives in the geometry.
   * @param {Uint16Array|Uint32Array} [options.indices] Optional index data that determines the primitives in the geometry.
   * @param {BoundingSphere} [options.boundingSphere] An optional bounding sphere that fully enclosed the geometry.
   *
   * @see PolygonGeometry
   * @see RectangleGeometry
   * @see EllipseGeometry
   * @see CircleGeometry
   * @see WallGeometry
   * @see SimplePolylineGeometry
   * @see BoxGeometry
   * @see EllipsoidGeometry
   *
   * @demo {@link https://sandcastle.cesium.com/index.html?src=Geometry%20and%20Appearances.html|Geometry and Appearances Demo}
   *
   * @example
   * // Create geometry with a position attribute and indexed lines.
   * var positions = new Float64Array([
   *   0.0, 0.0, 0.0,
   *   7500000.0, 0.0, 0.0,
   *   0.0, 7500000.0, 0.0
   * ]);
   *
   * var geometry = new Cesium.Geometry({
   *   attributes : {
   *     position : new Cesium.GeometryAttribute({
   *       componentDatatype : Cesium.ComponentDatatype.DOUBLE,
   *       componentsPerAttribute : 3,
   *       values : positions
   *     })
   *   },
   *   indices : new Uint16Array([0, 1, 1, 2, 2, 0]),
   *   primitiveType : Cesium.PrimitiveType.LINES,
   *   boundingSphere : Cesium.BoundingSphere.fromVertices(positions)
   * });
   */
  function Geometry(options) {
    options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);

    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("options.attributes", options.attributes);
    //>>includeEnd('debug');

    /**
     * Attributes, which make up the geometry's vertices.  Each property in this object corresponds to a
     * {@link GeometryAttribute} containing the attribute's data.
     * <p>
     * Attributes are always stored non-interleaved in a Geometry.
     * </p>
     * <p>
     * There are reserved attribute names with well-known semantics.  The following attributes
     * are created by a Geometry (depending on the provided {@link VertexFormat}.
     * <ul>
     *    <li><code>position</code> - 3D vertex position.  64-bit floating-point (for precision).  3 components per attribute.  See {@link VertexFormat#position}.</li>
     *    <li><code>normal</code> - Normal (normalized), commonly used for lighting.  32-bit floating-point.  3 components per attribute.  See {@link VertexFormat#normal}.</li>
     *    <li><code>st</code> - 2D texture coordinate.  32-bit floating-point.  2 components per attribute.  See {@link VertexFormat#st}.</li>
     *    <li><code>bitangent</code> - Bitangent (normalized), used for tangent-space effects like bump mapping.  32-bit floating-point.  3 components per attribute.  See {@link VertexFormat#bitangent}.</li>
     *    <li><code>tangent</code> - Tangent (normalized), used for tangent-space effects like bump mapping.  32-bit floating-point.  3 components per attribute.  See {@link VertexFormat#tangent}.</li>
     * </ul>
     * </p>
     * <p>
     * The following attribute names are generally not created by a Geometry, but are added
     * to a Geometry by a {@link Primitive} or {@link GeometryPipeline} functions to prepare
     * the geometry for rendering.
     * <ul>
     *    <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>
     *    <li><code>position3DLow</code> - Low 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>
     *    <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>
     *    <li><code>position2DLow</code> - Low 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>
     *    <li><code>color</code> - RGBA color (normalized) usually from {@link GeometryInstance#color}.  32-bit floating-point.  4 components per attribute.</li>
     *    <li><code>pickColor</code> - RGBA color used for picking.  32-bit floating-point.  4 components per attribute.</li>
     * </ul>
     * </p>
     *
     * @type GeometryAttributes
     *
     * @default undefined
     *
     *
     * @example
     * geometry.attributes.position = new Cesium.GeometryAttribute({
     *   componentDatatype : Cesium.ComponentDatatype.FLOAT,
     *   componentsPerAttribute : 3,
     *   values : new Float32Array(0)
     * });
     *
     * @see GeometryAttribute
     * @see VertexFormat
     */
    this.attributes = options.attributes;

    /**
     * Optional index data that - along with {@link Geometry#primitiveType} -
     * determines the primitives in the geometry.
     *
     * @type Array
     *
     * @default undefined
     */
    this.indices = options.indices;

    /**
     * The type of primitives in the geometry.  This is most often {@link PrimitiveType.TRIANGLES},
     * but can varying based on the specific geometry.
     *
     * @type PrimitiveType
     *
     * @default undefined
     */
    this.primitiveType = when.defaultValue(
      options.primitiveType,
      PrimitiveType$1.TRIANGLES
    );

    /**
     * An optional bounding sphere that fully encloses the geometry.  This is
     * commonly used for culling.
     *
     * @type BoundingSphere
     *
     * @default undefined
     */
    this.boundingSphere = options.boundingSphere;

    /**
     * @private
     */
    this.geometryType = when.defaultValue(options.geometryType, GeometryType$1.NONE);

    /**
     * @private
     */
    this.boundingSphereCV = options.boundingSphereCV;

    /**
     * Used for computing the bounding sphere for geometry using the applyOffset vertex attribute
     * @private
     */
    this.offsetAttribute = options.offsetAttribute;
  }

  /**
   * Computes the number of vertices in a geometry.  The runtime is linear with
   * respect to the number of attributes in a vertex, not the number of vertices.
   *
   * @param {Geometry} geometry The geometry.
   * @returns {Number} The number of vertices in the geometry.
   *
   * @example
   * var numVertices = Cesium.Geometry.computeNumberOfVertices(geometry);
   */
  Geometry.computeNumberOfVertices = function (geometry) {
    //>>includeStart('debug', pragmas.debug);
    Check.Check.typeOf.object("geometry", geometry);
    //>>includeEnd('debug');

    var numberOfVertices = -1;
    for (var property in geometry.attributes) {
      if (
        geometry.attributes.hasOwnProperty(property) &&
        when.defined(geometry.attributes[property]) &&
        when.defined(geometry.attributes[property].values)
      ) {
        var attribute = geometry.attributes[property];
        var num = attribute.values.length / attribute.componentsPerAttribute;
        //>>includeStart('debug', pragmas.debug);
        if (numberOfVertices !== num && numberOfVertices !== -1) {
          throw new Check.DeveloperError(
            "All attribute lists must have the same number of attributes."
          );
        }
        //>>includeEnd('debug');
        numberOfVertices = num;
      }
    }

    return numberOfVertices;
  };

  var rectangleCenterScratch = new Cartesian2.Cartographic();
  var enuCenterScratch = new Cartesian2.Cartesian3();
  var fixedFrameToEnuScratch = new Transforms.Matrix4();
  var boundingRectanglePointsCartographicScratch = [
    new Cartesian2.Cartographic(),
    new Cartesian2.Cartographic(),
    new Cartesian2.Cartographic(),
  ];
  var boundingRectanglePointsEnuScratch = [
    new Cartesian2.Cartesian2(),
    new Cartesian2.Cartesian2(),
    new Cartesian2.Cartesian2(),
  ];
  var points2DScratch = [new Cartesian2.Cartesian2(), new Cartesian2.Cartesian2(), new Cartesian2.Cartesian2()];
  var pointEnuScratch = new Cartesian2.Cartesian3();
  var enuRotationScratch = new Transforms.Quaternion();
  var enuRotationMatrixScratch = new Transforms.Matrix4();
  var rotation2DScratch = new Matrix2();

  /**
   * For remapping texture coordinates when rendering GroundPrimitives with materials.
   * GroundPrimitive texture coordinates are computed to align with the cartographic coordinate system on the globe.
   * However, EllipseGeometry, RectangleGeometry, and PolygonGeometry all bake rotations to per-vertex texture coordinates
   * using different strategies.
   *
   * This method is used by EllipseGeometry and PolygonGeometry to approximate the same visual effect.
   * We encapsulate rotation and scale by computing a "transformed" texture coordinate system and computing
   * a set of reference points from which "cartographic" texture coordinates can be remapped to the "transformed"
   * system using distances to lines in 2D.
   *
   * This approximation becomes less accurate as the covered area increases, especially for GroundPrimitives near the poles,
   * but is generally reasonable for polygons and ellipses around the size of USA states.
   *
   * RectangleGeometry has its own version of this method that computes remapping coordinates using cartographic space
   * as an intermediary instead of local ENU, which is more accurate for large-area rectangles.
   *
   * @param {Cartesian3[]} positions Array of positions outlining the geometry
   * @param {Number} stRotation Texture coordinate rotation.
   * @param {Ellipsoid} ellipsoid Ellipsoid for projecting and generating local vectors.
   * @param {Rectangle} boundingRectangle Bounding rectangle around the positions.
   * @returns {Number[]} An array of 6 numbers specifying [minimum point, u extent, v extent] as points in the "cartographic" system.
   * @private
   */
  Geometry._textureCoordinateRotationPoints = function (
    positions,
    stRotation,
    ellipsoid,
    boundingRectangle
  ) {
    var i;

    // Create a local east-north-up coordinate system centered on the polygon's bounding rectangle.
    // Project the southwest, northwest, and southeast corners of the bounding rectangle into the plane of ENU as 2D points.
    // These are the equivalents of (0,0), (0,1), and (1,0) in the texture coordiante system computed in ShadowVolumeAppearanceFS,
    // aka "ENU texture space."
    var rectangleCenter = Cartesian2.Rectangle.center(
      boundingRectangle,
      rectangleCenterScratch
    );
    var enuCenter = Cartesian2.Cartographic.toCartesian(
      rectangleCenter,
      ellipsoid,
      enuCenterScratch
    );
    var enuToFixedFrame = Transforms.Transforms.eastNorthUpToFixedFrame(
      enuCenter,
      ellipsoid,
      fixedFrameToEnuScratch
    );
    var fixedFrameToEnu = Transforms.Matrix4.inverse(
      enuToFixedFrame,
      fixedFrameToEnuScratch
    );

    var boundingPointsEnu = boundingRectanglePointsEnuScratch;
    var boundingPointsCarto = boundingRectanglePointsCartographicScratch;

    boundingPointsCarto[0].longitude = boundingRectangle.west;
    boundingPointsCarto[0].latitude = boundingRectangle.south;

    boundingPointsCarto[1].longitude = boundingRectangle.west;
    boundingPointsCarto[1].latitude = boundingRectangle.north;

    boundingPointsCarto[2].longitude = boundingRectangle.east;
    boundingPointsCarto[2].latitude = boundingRectangle.south;

    var posEnu = pointEnuScratch;

    for (i = 0; i < 3; i++) {
      Cartesian2.Cartographic.toCartesian(boundingPointsCarto[i], ellipsoid, posEnu);
      posEnu = Transforms.Matrix4.multiplyByPointAsVector(fixedFrameToEnu, posEnu, posEnu);
      boundingPointsEnu[i].x = posEnu.x;
      boundingPointsEnu[i].y = posEnu.y;
    }

    // Rotate each point in the polygon around the up vector in the ENU by -stRotation and project into ENU as 2D.
    // Compute the bounding box of these rotated points in the 2D ENU plane.
    // Rotate the corners back by stRotation, then compute their equivalents in the ENU texture space using the corners computed earlier.
    var rotation = Transforms.Quaternion.fromAxisAngle(
      Cartesian2.Cartesian3.UNIT_Z,
      -stRotation,
      enuRotationScratch
    );
    var textureMatrix = Transforms.Matrix3.fromQuaternion(
      rotation,
      enuRotationMatrixScratch
    );

    var positionsLength = positions.length;
    var enuMinX = Number.POSITIVE_INFINITY;
    var enuMinY = Number.POSITIVE_INFINITY;
    var enuMaxX = Number.NEGATIVE_INFINITY;
    var enuMaxY = Number.NEGATIVE_INFINITY;
    for (i = 0; i < positionsLength; i++) {
      posEnu = Transforms.Matrix4.multiplyByPointAsVector(
        fixedFrameToEnu,
        positions[i],
        posEnu
      );
      posEnu = Transforms.Matrix3.multiplyByVector(textureMatrix, posEnu, posEnu);

      enuMinX = Math.min(enuMinX, posEnu.x);
      enuMinY = Math.min(enuMinY, posEnu.y);
      enuMaxX = Math.max(enuMaxX, posEnu.x);
      enuMaxY = Math.max(enuMaxY, posEnu.y);
    }

    var toDesiredInComputed = Matrix2.fromRotation(stRotation, rotation2DScratch);

    var points2D = points2DScratch;
    points2D[0].x = enuMinX;
    points2D[0].y = enuMinY;

    points2D[1].x = enuMinX;
    points2D[1].y = enuMaxY;

    points2D[2].x = enuMaxX;
    points2D[2].y = enuMinY;

    var boundingEnuMin = boundingPointsEnu[0];
    var boundingPointsWidth = boundingPointsEnu[2].x - boundingEnuMin.x;
    var boundingPointsHeight = boundingPointsEnu[1].y - boundingEnuMin.y;

    for (i = 0; i < 3; i++) {
      var point2D = points2D[i];
      // rotate back
      Matrix2.multiplyByVector(toDesiredInComputed, point2D, point2D);

      // Convert point into east-north texture coordinate space
      point2D.x = (point2D.x - boundingEnuMin.x) / boundingPointsWidth;
      point2D.y = (point2D.y - boundingEnuMin.y) / boundingPointsHeight;
    }

    var minXYCorner = points2D[0];
    var maxYCorner = points2D[1];
    var maxXCorner = points2D[2];
    var result = new Array(6);
    Cartesian2.Cartesian2.pack(minXYCorner, result);
    Cartesian2.Cartesian2.pack(maxYCorner, result, 2);
    Cartesian2.Cartesian2.pack(maxXCorner, result, 4);

    return result;
  };

  /**
   * Values and type information for geometry attributes.  A {@link Geometry}
   * generally contains one or more attributes.  All attributes together form
   * the geometry's vertices.
   *
   * @alias GeometryAttribute
   * @constructor
   *
   * @param {Object} [options] Object with the following properties:
   * @param {ComponentDatatype} [options.componentDatatype] The datatype of each component in the attribute, e.g., individual elements in values.
   * @param {Number} [options.componentsPerAttribute] A number between 1 and 4 that defines the number of components in an attributes.
   * @param {Boolean} [options.normalize=false] When <code>true</code> and <code>componentDatatype</code> is an integer format, indicate that the components should be mapped to the range [0, 1] (unsigned) or [-1, 1] (signed) when they are accessed as floating-point for rendering.
   * @param {number[]|Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array|Float32Array|Float64Array} [options.values] The values for the attributes stored in a typed array.
   *
   * @exception {DeveloperError} options.componentsPerAttribute must be between 1 and 4.
   *
   *
   * @example
   * var geometry = new Cesium.Geometry({
   *   attributes : {
   *     position : new Cesium.GeometryAttribute({
   *       componentDatatype : Cesium.ComponentDatatype.FLOAT,
   *       componentsPerAttribute : 3,
   *       values : new Float32Array([
   *         0.0, 0.0, 0.0,
   *         7500000.0, 0.0, 0.0,
   *         0.0, 7500000.0, 0.0
   *       ])
   *     })
   *   },
   *   primitiveType : Cesium.PrimitiveType.LINE_LOOP
   * });
   *
   * @see Geometry
   */
  function GeometryAttribute(options) {
    options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);

    //>>includeStart('debug', pragmas.debug);
    if (!when.defined(options.componentDatatype)) {
      throw new Check.DeveloperError("options.componentDatatype is required.");
    }
    if (!when.defined(options.componentsPerAttribute)) {
      throw new Check.DeveloperError("options.componentsPerAttribute is required.");
    }
    if (
      options.componentsPerAttribute < 1 ||
      options.componentsPerAttribute > 4
    ) {
      throw new Check.DeveloperError(
        "options.componentsPerAttribute must be between 1 and 4."
      );
    }
    if (!when.defined(options.values)) {
      throw new Check.DeveloperError("options.values is required.");
    }
    //>>includeEnd('debug');

    /**
     * The datatype of each component in the attribute, e.g., individual elements in
     * {@link GeometryAttribute#values}.
     *
     * @type ComponentDatatype
     *
     * @default undefined
     */
    this.componentDatatype = options.componentDatatype;

    /**
     * A number between 1 and 4 that defines the number of components in an attributes.
     * For example, a position attribute with x, y, and z components would have 3 as
     * shown in the code example.
     *
     * @type Number
     *
     * @default undefined
     *
     * @example
     * attribute.componentDatatype = Cesium.ComponentDatatype.FLOAT;
     * attribute.componentsPerAttribute = 3;
     * attribute.values = new Float32Array([
     *   0.0, 0.0, 0.0,
     *   7500000.0, 0.0, 0.0,
     *   0.0, 7500000.0, 0.0
     * ]);
     */
    this.componentsPerAttribute = options.componentsPerAttribute;

    /**
     * When <code>true</code> and <code>componentDatatype</code> is an integer format,
     * indicate that the components should be mapped to the range [0, 1] (unsigned)
     * or [-1, 1] (signed) when they are accessed as floating-point for rendering.
     * <p>
     * This is commonly used when storing colors using {@link ComponentDatatype.UNSIGNED_BYTE}.
     * </p>
     *
     * @type Boolean
     *
     * @default false
     *
     * @example
     * attribute.componentDatatype = Cesium.ComponentDatatype.UNSIGNED_BYTE;
     * attribute.componentsPerAttribute = 4;
     * attribute.normalize = true;
     * attribute.values = new Uint8Array([
     *   Cesium.Color.floatToByte(color.red),
     *   Cesium.Color.floatToByte(color.green),
     *   Cesium.Color.floatToByte(color.blue),
     *   Cesium.Color.floatToByte(color.alpha)
     * ]);
     */
    this.normalize = when.defaultValue(options.normalize, false);

    /**
     * The values for the attributes stored in a typed array.  In the code example,
     * every three elements in <code>values</code> defines one attributes since
     * <code>componentsPerAttribute</code> is 3.
     *
     * @type {number[]|Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array|Float32Array|Float64Array}
     *
     * @default undefined
     *
     * @example
     * attribute.componentDatatype = Cesium.ComponentDatatype.FLOAT;
     * attribute.componentsPerAttribute = 3;
     * attribute.values = new Float32Array([
     *   0.0, 0.0, 0.0,
     *   7500000.0, 0.0, 0.0,
     *   0.0, 7500000.0, 0.0
     * ]);
     */
    this.values = options.values;
  }

  exports.Geometry = Geometry;
  exports.GeometryAttribute = GeometryAttribute;
  exports.GeometryType = GeometryType$1;
  exports.Matrix2 = Matrix2;
  exports.PrimitiveType = PrimitiveType$1;

});