Newer
Older
SafetyAuxiliary / sdk / java / src / org / opencv / dnn / Model.java
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.dnn;

import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.utils.Converters;

import java.util.List;

// C++: class Model
/**
 * This class is presented high-level API for neural networks.
 *
 * Model allows to set params for preprocessing input image.
 * Model creates net from file with trained weights and config,
 * sets preprocessing input and runs forward pass.
 */
public class Model {

    protected final long nativeObj;
    protected Model(long addr) { nativeObj = addr; }

    public long getNativeObjAddr() { return nativeObj; }

    // internal usage only
    public static Model __fromPtr__(long addr) { return new Model(addr); }

    //
    // C++:   cv::dnn::Model::Model(String model, String config = "")
    //

    /**
     * Create model from deep learning network represented in one of the supported formats.
     * An order of {@code model} and {@code config} arguments does not matter.
     * @param model Binary file contains trained weights.
     * @param config Text file contains network configuration.
     */
    public Model(String model, String config) {
        nativeObj = Model_0(model, config);
    }

    /**
     * Create model from deep learning network represented in one of the supported formats.
     * An order of {@code model} and {@code config} arguments does not matter.
     * @param model Binary file contains trained weights.
     */
    public Model(String model) {
        nativeObj = Model_1(model);
    }


    //
    // C++:   cv::dnn::Model::Model(Net network)
    //

    /**
     * Create model from deep learning network.
     * @param network Net object.
     */
    public Model(Net network) {
        nativeObj = Model_2(network.nativeObj);
    }


    //
    // C++:  Model cv::dnn::Model::setInputSize(Size size)
    //

    /**
     * Set input size for frame.
     * @param size New input size.
     * <b>Note:</b> If shape of the new blob less than 0, then frame size not change.
     * @return automatically generated
     */
    public Model setInputSize(Size size) {
        return new Model(setInputSize_0(nativeObj, size.width, size.height));
    }


    //
    // C++:  Model cv::dnn::Model::setInputSize(int width, int height)
    //

    /**
     *
     * @param width New input width.
     * @param height New input height.
     * @return automatically generated
     */
    public Model setInputSize(int width, int height) {
        return new Model(setInputSize_1(nativeObj, width, height));
    }


    //
    // C++:  Model cv::dnn::Model::setInputMean(Scalar mean)
    //

    /**
     * Set mean value for frame.
     * @param mean Scalar with mean values which are subtracted from channels.
     * @return automatically generated
     */
    public Model setInputMean(Scalar mean) {
        return new Model(setInputMean_0(nativeObj, mean.val[0], mean.val[1], mean.val[2], mean.val[3]));
    }


    //
    // C++:  Model cv::dnn::Model::setInputScale(Scalar scale)
    //

    /**
     * Set scalefactor value for frame.
     * @param scale Multiplier for frame values.
     * @return automatically generated
     */
    public Model setInputScale(Scalar scale) {
        return new Model(setInputScale_0(nativeObj, scale.val[0], scale.val[1], scale.val[2], scale.val[3]));
    }


    //
    // C++:  Model cv::dnn::Model::setInputCrop(bool crop)
    //

    /**
     * Set flag crop for frame.
     * @param crop Flag which indicates whether image will be cropped after resize or not.
     * @return automatically generated
     */
    public Model setInputCrop(boolean crop) {
        return new Model(setInputCrop_0(nativeObj, crop));
    }


    //
    // C++:  Model cv::dnn::Model::setInputSwapRB(bool swapRB)
    //

    /**
     * Set flag swapRB for frame.
     * @param swapRB Flag which indicates that swap first and last channels.
     * @return automatically generated
     */
    public Model setInputSwapRB(boolean swapRB) {
        return new Model(setInputSwapRB_0(nativeObj, swapRB));
    }


    //
    // C++:  void cv::dnn::Model::setInputParams(double scale = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = false, bool crop = false)
    //

    /**
     * Set preprocessing parameters for frame.
     * @param size New input size.
     * @param mean Scalar with mean values which are subtracted from channels.
     * @param scale Multiplier for frame values.
     * @param swapRB Flag which indicates that swap first and last channels.
     * @param crop Flag which indicates whether image will be cropped after resize or not.
     * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
     */
    public void setInputParams(double scale, Size size, Scalar mean, boolean swapRB, boolean crop) {
        setInputParams_0(nativeObj, scale, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3], swapRB, crop);
    }

    /**
     * Set preprocessing parameters for frame.
     * @param size New input size.
     * @param mean Scalar with mean values which are subtracted from channels.
     * @param scale Multiplier for frame values.
     * @param swapRB Flag which indicates that swap first and last channels.
     * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
     */
    public void setInputParams(double scale, Size size, Scalar mean, boolean swapRB) {
        setInputParams_1(nativeObj, scale, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3], swapRB);
    }

    /**
     * Set preprocessing parameters for frame.
     * @param size New input size.
     * @param mean Scalar with mean values which are subtracted from channels.
     * @param scale Multiplier for frame values.
     * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
     */
    public void setInputParams(double scale, Size size, Scalar mean) {
        setInputParams_2(nativeObj, scale, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3]);
    }

    /**
     * Set preprocessing parameters for frame.
     * @param size New input size.
     * @param scale Multiplier for frame values.
     * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
     */
    public void setInputParams(double scale, Size size) {
        setInputParams_3(nativeObj, scale, size.width, size.height);
    }

    /**
     * Set preprocessing parameters for frame.
     * @param scale Multiplier for frame values.
     * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
     */
    public void setInputParams(double scale) {
        setInputParams_4(nativeObj, scale);
    }

    /**
     * Set preprocessing parameters for frame.
     * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
     */
    public void setInputParams() {
        setInputParams_5(nativeObj);
    }


    //
    // C++:  void cv::dnn::Model::predict(Mat frame, vector_Mat& outs)
    //

    /**
     * Given the {@code input} frame, create input blob, run net and return the output {@code blobs}.
     * @param outs Allocated output blobs, which will store results of the computation.
     * @param frame automatically generated
     */
    public void predict(Mat frame, List<Mat> outs) {
        Mat outs_mat = new Mat();
        predict_0(nativeObj, frame.nativeObj, outs_mat.nativeObj);
        Converters.Mat_to_vector_Mat(outs_mat, outs);
        outs_mat.release();
    }


    //
    // C++:  Model cv::dnn::Model::setPreferableBackend(dnn_Backend backendId)
    //

    public Model setPreferableBackend(int backendId) {
        return new Model(setPreferableBackend_0(nativeObj, backendId));
    }


    //
    // C++:  Model cv::dnn::Model::setPreferableTarget(dnn_Target targetId)
    //

    public Model setPreferableTarget(int targetId) {
        return new Model(setPreferableTarget_0(nativeObj, targetId));
    }


    //
    // C++:  Model cv::dnn::Model::enableWinograd(bool useWinograd)
    //

    public Model enableWinograd(boolean useWinograd) {
        return new Model(enableWinograd_0(nativeObj, useWinograd));
    }


    @Override
    protected void finalize() throws Throwable {
        delete(nativeObj);
    }



    // C++:   cv::dnn::Model::Model(String model, String config = "")
    private static native long Model_0(String model, String config);
    private static native long Model_1(String model);

    // C++:   cv::dnn::Model::Model(Net network)
    private static native long Model_2(long network_nativeObj);

    // C++:  Model cv::dnn::Model::setInputSize(Size size)
    private static native long setInputSize_0(long nativeObj, double size_width, double size_height);

    // C++:  Model cv::dnn::Model::setInputSize(int width, int height)
    private static native long setInputSize_1(long nativeObj, int width, int height);

    // C++:  Model cv::dnn::Model::setInputMean(Scalar mean)
    private static native long setInputMean_0(long nativeObj, double mean_val0, double mean_val1, double mean_val2, double mean_val3);

    // C++:  Model cv::dnn::Model::setInputScale(Scalar scale)
    private static native long setInputScale_0(long nativeObj, double scale_val0, double scale_val1, double scale_val2, double scale_val3);

    // C++:  Model cv::dnn::Model::setInputCrop(bool crop)
    private static native long setInputCrop_0(long nativeObj, boolean crop);

    // C++:  Model cv::dnn::Model::setInputSwapRB(bool swapRB)
    private static native long setInputSwapRB_0(long nativeObj, boolean swapRB);

    // C++:  void cv::dnn::Model::setInputParams(double scale = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = false, bool crop = false)
    private static native void setInputParams_0(long nativeObj, double scale, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3, boolean swapRB, boolean crop);
    private static native void setInputParams_1(long nativeObj, double scale, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3, boolean swapRB);
    private static native void setInputParams_2(long nativeObj, double scale, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3);
    private static native void setInputParams_3(long nativeObj, double scale, double size_width, double size_height);
    private static native void setInputParams_4(long nativeObj, double scale);
    private static native void setInputParams_5(long nativeObj);

    // C++:  void cv::dnn::Model::predict(Mat frame, vector_Mat& outs)
    private static native void predict_0(long nativeObj, long frame_nativeObj, long outs_mat_nativeObj);

    // C++:  Model cv::dnn::Model::setPreferableBackend(dnn_Backend backendId)
    private static native long setPreferableBackend_0(long nativeObj, int backendId);

    // C++:  Model cv::dnn::Model::setPreferableTarget(dnn_Target targetId)
    private static native long setPreferableTarget_0(long nativeObj, int targetId);

    // C++:  Model cv::dnn::Model::enableWinograd(bool useWinograd)
    private static native long enableWinograd_0(long nativeObj, boolean useWinograd);

    // native support for java finalize()
    private static native void delete(long nativeObj);

}