// // This file is auto-generated. Please don't modify it! // package org.opencv.imgproc; import org.opencv.core.Mat; import org.opencv.core.Point; // C++: class IntelligentScissorsMB /** * Intelligent Scissors image segmentation * * This class is used to find the path (contour) between two points * which can be used for image segmentation. * * Usage example: * SNIPPET: snippets/imgproc_segmentation.cpp usage_example_intelligent_scissors * * Reference: <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf">"Intelligent Scissors for Image Composition"</a> * algorithm designed by Eric N. Mortensen and William A. Barrett, Brigham Young University * CITE: Mortensen95intelligentscissors */ public class IntelligentScissorsMB { protected final long nativeObj; protected IntelligentScissorsMB(long addr) { nativeObj = addr; } public long getNativeObjAddr() { return nativeObj; } // internal usage only public static IntelligentScissorsMB __fromPtr__(long addr) { return new IntelligentScissorsMB(addr); } // // C++: cv::segmentation::IntelligentScissorsMB::IntelligentScissorsMB() // public IntelligentScissorsMB() { nativeObj = IntelligentScissorsMB_0(); } // // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::setWeights(float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude) // /** * Specify weights of feature functions * * Consider keeping weights normalized (sum of weights equals to 1.0) * Discrete dynamic programming (DP) goal is minimization of costs between pixels. * * @param weight_non_edge Specify cost of non-edge pixels (default: 0.43f) * @param weight_gradient_direction Specify cost of gradient direction function (default: 0.43f) * @param weight_gradient_magnitude Specify cost of gradient magnitude function (default: 0.14f) * @return automatically generated */ public IntelligentScissorsMB setWeights(float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude) { return new IntelligentScissorsMB(setWeights_0(nativeObj, weight_non_edge, weight_gradient_direction, weight_gradient_magnitude)); } // // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max = 0.0f) // /** * Specify gradient magnitude max value threshold * * Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article). * Otherwize pixels with {@code gradient magnitude >= threshold} have zero cost. * * <b>Note:</b> Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos). * * @param gradient_magnitude_threshold_max Specify gradient magnitude max value threshold (default: 0, disabled) * @return automatically generated */ public IntelligentScissorsMB setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max) { return new IntelligentScissorsMB(setGradientMagnitudeMaxLimit_0(nativeObj, gradient_magnitude_threshold_max)); } /** * Specify gradient magnitude max value threshold * * Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article). * Otherwize pixels with {@code gradient magnitude >= threshold} have zero cost. * * <b>Note:</b> Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos). * * @return automatically generated */ public IntelligentScissorsMB setGradientMagnitudeMaxLimit() { return new IntelligentScissorsMB(setGradientMagnitudeMaxLimit_1(nativeObj)); } // // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value = 0.0f) // /** * Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters * * This feature extractor is used by default according to article. * * Implementation has additional filtering for regions with low-amplitude noise. * This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16). * * <b>Note:</b> Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first). * * <b>Note:</b> Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters(). * * @param gradient_magnitude_min_value Minimal gradient magnitude value for edge pixels (default: 0, check is disabled) * @return automatically generated */ public IntelligentScissorsMB setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value) { return new IntelligentScissorsMB(setEdgeFeatureZeroCrossingParameters_0(nativeObj, gradient_magnitude_min_value)); } /** * Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters * * This feature extractor is used by default according to article. * * Implementation has additional filtering for regions with low-amplitude noise. * This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16). * * <b>Note:</b> Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first). * * <b>Note:</b> Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters(). * * @return automatically generated */ public IntelligentScissorsMB setEdgeFeatureZeroCrossingParameters() { return new IntelligentScissorsMB(setEdgeFeatureZeroCrossingParameters_1(nativeObj)); } // // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::setEdgeFeatureCannyParameters(double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false) // /** * Switch edge feature extractor to use Canny edge detector * * <b>Note:</b> "Laplacian Zero-Crossing" feature extractor is used by default (following to original article) * * SEE: Canny * @param threshold1 automatically generated * @param threshold2 automatically generated * @param apertureSize automatically generated * @param L2gradient automatically generated * @return automatically generated */ public IntelligentScissorsMB setEdgeFeatureCannyParameters(double threshold1, double threshold2, int apertureSize, boolean L2gradient) { return new IntelligentScissorsMB(setEdgeFeatureCannyParameters_0(nativeObj, threshold1, threshold2, apertureSize, L2gradient)); } /** * Switch edge feature extractor to use Canny edge detector * * <b>Note:</b> "Laplacian Zero-Crossing" feature extractor is used by default (following to original article) * * SEE: Canny * @param threshold1 automatically generated * @param threshold2 automatically generated * @param apertureSize automatically generated * @return automatically generated */ public IntelligentScissorsMB setEdgeFeatureCannyParameters(double threshold1, double threshold2, int apertureSize) { return new IntelligentScissorsMB(setEdgeFeatureCannyParameters_1(nativeObj, threshold1, threshold2, apertureSize)); } /** * Switch edge feature extractor to use Canny edge detector * * <b>Note:</b> "Laplacian Zero-Crossing" feature extractor is used by default (following to original article) * * SEE: Canny * @param threshold1 automatically generated * @param threshold2 automatically generated * @return automatically generated */ public IntelligentScissorsMB setEdgeFeatureCannyParameters(double threshold1, double threshold2) { return new IntelligentScissorsMB(setEdgeFeatureCannyParameters_2(nativeObj, threshold1, threshold2)); } // // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::applyImage(Mat image) // /** * Specify input image and extract image features * * @param image input image. Type is #CV_8UC1 / #CV_8UC3 * @return automatically generated */ public IntelligentScissorsMB applyImage(Mat image) { return new IntelligentScissorsMB(applyImage_0(nativeObj, image.nativeObj)); } // // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::applyImageFeatures(Mat non_edge, Mat gradient_direction, Mat gradient_magnitude, Mat image = Mat()) // /** * Specify custom features of input image * * Customized advanced variant of applyImage() call. * * @param non_edge Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are {@code {0, 1}}. * @param gradient_direction Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: {@code x^2 + y^2 == 1} * @param gradient_magnitude Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range {@code [0, 1]}. * @param image <b>Optional parameter</b>. Must be specified if subset of features is specified (non-specified features are calculated internally) * @return automatically generated */ public IntelligentScissorsMB applyImageFeatures(Mat non_edge, Mat gradient_direction, Mat gradient_magnitude, Mat image) { return new IntelligentScissorsMB(applyImageFeatures_0(nativeObj, non_edge.nativeObj, gradient_direction.nativeObj, gradient_magnitude.nativeObj, image.nativeObj)); } /** * Specify custom features of input image * * Customized advanced variant of applyImage() call. * * @param non_edge Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are {@code {0, 1}}. * @param gradient_direction Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: {@code x^2 + y^2 == 1} * @param gradient_magnitude Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range {@code [0, 1]}. * @return automatically generated */ public IntelligentScissorsMB applyImageFeatures(Mat non_edge, Mat gradient_direction, Mat gradient_magnitude) { return new IntelligentScissorsMB(applyImageFeatures_1(nativeObj, non_edge.nativeObj, gradient_direction.nativeObj, gradient_magnitude.nativeObj)); } // // C++: void cv::segmentation::IntelligentScissorsMB::buildMap(Point sourcePt) // /** * Prepares a map of optimal paths for the given source point on the image * * <b>Note:</b> applyImage() / applyImageFeatures() must be called before this call * * @param sourcePt The source point used to find the paths */ public void buildMap(Point sourcePt) { buildMap_0(nativeObj, sourcePt.x, sourcePt.y); } // // C++: void cv::segmentation::IntelligentScissorsMB::getContour(Point targetPt, Mat& contour, bool backward = false) // /** * Extracts optimal contour for the given target point on the image * * <b>Note:</b> buildMap() must be called before this call * * @param targetPt The target point * @param contour The list of pixels which contains optimal path between the source and the target points of the image. Type is CV_32SC2 (compatible with {@code std::vector<Point>}) * @param backward Flag to indicate reverse order of retrived pixels (use "true" value to fetch points from the target to the source point) */ public void getContour(Point targetPt, Mat contour, boolean backward) { getContour_0(nativeObj, targetPt.x, targetPt.y, contour.nativeObj, backward); } /** * Extracts optimal contour for the given target point on the image * * <b>Note:</b> buildMap() must be called before this call * * @param targetPt The target point * @param contour The list of pixels which contains optimal path between the source and the target points of the image. Type is CV_32SC2 (compatible with {@code std::vector<Point>}) */ public void getContour(Point targetPt, Mat contour) { getContour_1(nativeObj, targetPt.x, targetPt.y, contour.nativeObj); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: cv::segmentation::IntelligentScissorsMB::IntelligentScissorsMB() private static native long IntelligentScissorsMB_0(); // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::setWeights(float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude) private static native long setWeights_0(long nativeObj, float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude); // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max = 0.0f) private static native long setGradientMagnitudeMaxLimit_0(long nativeObj, float gradient_magnitude_threshold_max); private static native long setGradientMagnitudeMaxLimit_1(long nativeObj); // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value = 0.0f) private static native long setEdgeFeatureZeroCrossingParameters_0(long nativeObj, float gradient_magnitude_min_value); private static native long setEdgeFeatureZeroCrossingParameters_1(long nativeObj); // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::setEdgeFeatureCannyParameters(double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false) private static native long setEdgeFeatureCannyParameters_0(long nativeObj, double threshold1, double threshold2, int apertureSize, boolean L2gradient); private static native long setEdgeFeatureCannyParameters_1(long nativeObj, double threshold1, double threshold2, int apertureSize); private static native long setEdgeFeatureCannyParameters_2(long nativeObj, double threshold1, double threshold2); // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::applyImage(Mat image) private static native long applyImage_0(long nativeObj, long image_nativeObj); // C++: IntelligentScissorsMB cv::segmentation::IntelligentScissorsMB::applyImageFeatures(Mat non_edge, Mat gradient_direction, Mat gradient_magnitude, Mat image = Mat()) private static native long applyImageFeatures_0(long nativeObj, long non_edge_nativeObj, long gradient_direction_nativeObj, long gradient_magnitude_nativeObj, long image_nativeObj); private static native long applyImageFeatures_1(long nativeObj, long non_edge_nativeObj, long gradient_direction_nativeObj, long gradient_magnitude_nativeObj); // C++: void cv::segmentation::IntelligentScissorsMB::buildMap(Point sourcePt) private static native void buildMap_0(long nativeObj, double sourcePt_x, double sourcePt_y); // C++: void cv::segmentation::IntelligentScissorsMB::getContour(Point targetPt, Mat& contour, bool backward = false) private static native void getContour_0(long nativeObj, double targetPt_x, double targetPt_y, long contour_nativeObj, boolean backward); private static native void getContour_1(long nativeObj, double targetPt_x, double targetPt_y, long contour_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }