// // This file is auto-generated. Please don't modify it! // package org.opencv.ml; import org.opencv.core.Mat; import org.opencv.core.TermCriteria; // C++: class RTrees /** * The class implements the random forest predictor. * * SEE: REF: ml_intro_rtrees */ public class RTrees extends DTrees { protected RTrees(long addr) { super(addr); } // internal usage only public static RTrees __fromPtr__(long addr) { return new RTrees(addr); } // // C++: bool cv::ml::RTrees::getCalculateVarImportance() // /** * SEE: setCalculateVarImportance * @return automatically generated */ public boolean getCalculateVarImportance() { return getCalculateVarImportance_0(nativeObj); } // // C++: void cv::ml::RTrees::setCalculateVarImportance(bool val) // /** * getCalculateVarImportance SEE: getCalculateVarImportance * @param val automatically generated */ public void setCalculateVarImportance(boolean val) { setCalculateVarImportance_0(nativeObj, val); } // // C++: int cv::ml::RTrees::getActiveVarCount() // /** * SEE: setActiveVarCount * @return automatically generated */ public int getActiveVarCount() { return getActiveVarCount_0(nativeObj); } // // C++: void cv::ml::RTrees::setActiveVarCount(int val) // /** * getActiveVarCount SEE: getActiveVarCount * @param val automatically generated */ public void setActiveVarCount(int val) { setActiveVarCount_0(nativeObj, val); } // // C++: TermCriteria cv::ml::RTrees::getTermCriteria() // /** * SEE: setTermCriteria * @return automatically generated */ public TermCriteria getTermCriteria() { return new TermCriteria(getTermCriteria_0(nativeObj)); } // // C++: void cv::ml::RTrees::setTermCriteria(TermCriteria val) // /** * getTermCriteria SEE: getTermCriteria * @param val automatically generated */ public void setTermCriteria(TermCriteria val) { setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); } // // C++: Mat cv::ml::RTrees::getVarImportance() // /** * Returns the variable importance array. * The method returns the variable importance vector, computed at the training stage when * CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is * returned. * @return automatically generated */ public Mat getVarImportance() { return new Mat(getVarImportance_0(nativeObj)); } // // C++: void cv::ml::RTrees::getVotes(Mat samples, Mat& results, int flags) // /** * Returns the result of each individual tree in the forest. * In case the model is a regression problem, the method will return each of the trees' * results for each of the sample cases. If the model is a classifier, it will return * a Mat with samples + 1 rows, where the first row gives the class number and the * following rows return the votes each class had for each sample. * @param samples Array containing the samples for which votes will be calculated. * @param results Array where the result of the calculation will be written. * @param flags Flags for defining the type of RTrees. */ public void getVotes(Mat samples, Mat results, int flags) { getVotes_0(nativeObj, samples.nativeObj, results.nativeObj, flags); } // // C++: double cv::ml::RTrees::getOOBError() // /** * Returns the OOB error value, computed at the training stage when calcOOBError is set to true. * If this flag was set to false, 0 is returned. The OOB error is also scaled by sample weighting. * @return automatically generated */ public double getOOBError() { return getOOBError_0(nativeObj); } // // C++: static Ptr_RTrees cv::ml::RTrees::create() // /** * Creates the empty model. * Use StatModel::train to train the model, StatModel::train to create and train the model, * Algorithm::load to load the pre-trained model. * @return automatically generated */ public static RTrees create() { return RTrees.__fromPtr__(create_0()); } // // C++: static Ptr_RTrees cv::ml::RTrees::load(String filepath, String nodeName = String()) // /** * Loads and creates a serialized RTree from a file * * Use RTree::save to serialize and store an RTree to disk. * Load the RTree from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized RTree * @param nodeName name of node containing the classifier * @return automatically generated */ public static RTrees load(String filepath, String nodeName) { return RTrees.__fromPtr__(load_0(filepath, nodeName)); } /** * Loads and creates a serialized RTree from a file * * Use RTree::save to serialize and store an RTree to disk. * Load the RTree from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized RTree * @return automatically generated */ public static RTrees load(String filepath) { return RTrees.__fromPtr__(load_1(filepath)); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: bool cv::ml::RTrees::getCalculateVarImportance() private static native boolean getCalculateVarImportance_0(long nativeObj); // C++: void cv::ml::RTrees::setCalculateVarImportance(bool val) private static native void setCalculateVarImportance_0(long nativeObj, boolean val); // C++: int cv::ml::RTrees::getActiveVarCount() private static native int getActiveVarCount_0(long nativeObj); // C++: void cv::ml::RTrees::setActiveVarCount(int val) private static native void setActiveVarCount_0(long nativeObj, int val); // C++: TermCriteria cv::ml::RTrees::getTermCriteria() private static native double[] getTermCriteria_0(long nativeObj); // C++: void cv::ml::RTrees::setTermCriteria(TermCriteria val) private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); // C++: Mat cv::ml::RTrees::getVarImportance() private static native long getVarImportance_0(long nativeObj); // C++: void cv::ml::RTrees::getVotes(Mat samples, Mat& results, int flags) private static native void getVotes_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); // C++: double cv::ml::RTrees::getOOBError() private static native double getOOBError_0(long nativeObj); // C++: static Ptr_RTrees cv::ml::RTrees::create() private static native long create_0(); // C++: static Ptr_RTrees cv::ml::RTrees::load(String filepath, String nodeName = String()) private static native long load_0(String filepath, String nodeName); private static native long load_1(String filepath); // native support for java finalize() private static native void delete(long nativeObj); }