// // This file is auto-generated. Please don't modify it! // package org.opencv.ml; import org.opencv.core.Mat; import org.opencv.core.TermCriteria; // C++: class SVMSGD /** * *************************************************************************************\ * Stochastic Gradient Descent SVM Classifier * * \*************************************************************************************** */ public class SVMSGD extends StatModel { protected SVMSGD(long addr) { super(addr); } // internal usage only public static SVMSGD __fromPtr__(long addr) { return new SVMSGD(addr); } // C++: enum MarginType (cv.ml.SVMSGD.MarginType) public static final int SOFT_MARGIN = 0, HARD_MARGIN = 1; // C++: enum SvmsgdType (cv.ml.SVMSGD.SvmsgdType) public static final int SGD = 0, ASGD = 1; // // C++: Mat cv::ml::SVMSGD::getWeights() // /** * @return the weights of the trained model (decision function f(x) = weights * x + shift). */ public Mat getWeights() { return new Mat(getWeights_0(nativeObj)); } // // C++: float cv::ml::SVMSGD::getShift() // /** * @return the shift of the trained model (decision function f(x) = weights * x + shift). */ public float getShift() { return getShift_0(nativeObj); } // // C++: static Ptr_SVMSGD cv::ml::SVMSGD::create() // /** * Creates empty model. * Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to * find the best parameters for your problem or use setOptimalParameters() to set some default parameters. * @return automatically generated */ public static SVMSGD create() { return SVMSGD.__fromPtr__(create_0()); } // // C++: static Ptr_SVMSGD cv::ml::SVMSGD::load(String filepath, String nodeName = String()) // /** * Loads and creates a serialized SVMSGD from a file * * Use SVMSGD::save to serialize and store an SVMSGD to disk. * Load the SVMSGD from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized SVMSGD * @param nodeName name of node containing the classifier * @return automatically generated */ public static SVMSGD load(String filepath, String nodeName) { return SVMSGD.__fromPtr__(load_0(filepath, nodeName)); } /** * Loads and creates a serialized SVMSGD from a file * * Use SVMSGD::save to serialize and store an SVMSGD to disk. * Load the SVMSGD from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized SVMSGD * @return automatically generated */ public static SVMSGD load(String filepath) { return SVMSGD.__fromPtr__(load_1(filepath)); } // // C++: void cv::ml::SVMSGD::setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) // /** * Function sets optimal parameters values for chosen SVM SGD model. * @param svmsgdType is the type of SVMSGD classifier. * @param marginType is the type of margin constraint. */ public void setOptimalParameters(int svmsgdType, int marginType) { setOptimalParameters_0(nativeObj, svmsgdType, marginType); } /** * Function sets optimal parameters values for chosen SVM SGD model. * @param svmsgdType is the type of SVMSGD classifier. */ public void setOptimalParameters(int svmsgdType) { setOptimalParameters_1(nativeObj, svmsgdType); } /** * Function sets optimal parameters values for chosen SVM SGD model. */ public void setOptimalParameters() { setOptimalParameters_2(nativeObj); } // // C++: int cv::ml::SVMSGD::getSvmsgdType() // /** * SEE: setSvmsgdType * @return automatically generated */ public int getSvmsgdType() { return getSvmsgdType_0(nativeObj); } // // C++: void cv::ml::SVMSGD::setSvmsgdType(int svmsgdType) // /** * getSvmsgdType SEE: getSvmsgdType * @param svmsgdType automatically generated */ public void setSvmsgdType(int svmsgdType) { setSvmsgdType_0(nativeObj, svmsgdType); } // // C++: int cv::ml::SVMSGD::getMarginType() // /** * SEE: setMarginType * @return automatically generated */ public int getMarginType() { return getMarginType_0(nativeObj); } // // C++: void cv::ml::SVMSGD::setMarginType(int marginType) // /** * getMarginType SEE: getMarginType * @param marginType automatically generated */ public void setMarginType(int marginType) { setMarginType_0(nativeObj, marginType); } // // C++: float cv::ml::SVMSGD::getMarginRegularization() // /** * SEE: setMarginRegularization * @return automatically generated */ public float getMarginRegularization() { return getMarginRegularization_0(nativeObj); } // // C++: void cv::ml::SVMSGD::setMarginRegularization(float marginRegularization) // /** * getMarginRegularization SEE: getMarginRegularization * @param marginRegularization automatically generated */ public void setMarginRegularization(float marginRegularization) { setMarginRegularization_0(nativeObj, marginRegularization); } // // C++: float cv::ml::SVMSGD::getInitialStepSize() // /** * SEE: setInitialStepSize * @return automatically generated */ public float getInitialStepSize() { return getInitialStepSize_0(nativeObj); } // // C++: void cv::ml::SVMSGD::setInitialStepSize(float InitialStepSize) // /** * getInitialStepSize SEE: getInitialStepSize * @param InitialStepSize automatically generated */ public void setInitialStepSize(float InitialStepSize) { setInitialStepSize_0(nativeObj, InitialStepSize); } // // C++: float cv::ml::SVMSGD::getStepDecreasingPower() // /** * SEE: setStepDecreasingPower * @return automatically generated */ public float getStepDecreasingPower() { return getStepDecreasingPower_0(nativeObj); } // // C++: void cv::ml::SVMSGD::setStepDecreasingPower(float stepDecreasingPower) // /** * getStepDecreasingPower SEE: getStepDecreasingPower * @param stepDecreasingPower automatically generated */ public void setStepDecreasingPower(float stepDecreasingPower) { setStepDecreasingPower_0(nativeObj, stepDecreasingPower); } // // C++: TermCriteria cv::ml::SVMSGD::getTermCriteria() // /** * SEE: setTermCriteria * @return automatically generated */ public TermCriteria getTermCriteria() { return new TermCriteria(getTermCriteria_0(nativeObj)); } // // C++: void cv::ml::SVMSGD::setTermCriteria(TermCriteria val) // /** * getTermCriteria SEE: getTermCriteria * @param val automatically generated */ public void setTermCriteria(TermCriteria val) { setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: Mat cv::ml::SVMSGD::getWeights() private static native long getWeights_0(long nativeObj); // C++: float cv::ml::SVMSGD::getShift() private static native float getShift_0(long nativeObj); // C++: static Ptr_SVMSGD cv::ml::SVMSGD::create() private static native long create_0(); // C++: static Ptr_SVMSGD cv::ml::SVMSGD::load(String filepath, String nodeName = String()) private static native long load_0(String filepath, String nodeName); private static native long load_1(String filepath); // C++: void cv::ml::SVMSGD::setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) private static native void setOptimalParameters_0(long nativeObj, int svmsgdType, int marginType); private static native void setOptimalParameters_1(long nativeObj, int svmsgdType); private static native void setOptimalParameters_2(long nativeObj); // C++: int cv::ml::SVMSGD::getSvmsgdType() private static native int getSvmsgdType_0(long nativeObj); // C++: void cv::ml::SVMSGD::setSvmsgdType(int svmsgdType) private static native void setSvmsgdType_0(long nativeObj, int svmsgdType); // C++: int cv::ml::SVMSGD::getMarginType() private static native int getMarginType_0(long nativeObj); // C++: void cv::ml::SVMSGD::setMarginType(int marginType) private static native void setMarginType_0(long nativeObj, int marginType); // C++: float cv::ml::SVMSGD::getMarginRegularization() private static native float getMarginRegularization_0(long nativeObj); // C++: void cv::ml::SVMSGD::setMarginRegularization(float marginRegularization) private static native void setMarginRegularization_0(long nativeObj, float marginRegularization); // C++: float cv::ml::SVMSGD::getInitialStepSize() private static native float getInitialStepSize_0(long nativeObj); // C++: void cv::ml::SVMSGD::setInitialStepSize(float InitialStepSize) private static native void setInitialStepSize_0(long nativeObj, float InitialStepSize); // C++: float cv::ml::SVMSGD::getStepDecreasingPower() private static native float getStepDecreasingPower_0(long nativeObj); // C++: void cv::ml::SVMSGD::setStepDecreasingPower(float stepDecreasingPower) private static native void setStepDecreasingPower_0(long nativeObj, float stepDecreasingPower); // C++: TermCriteria cv::ml::SVMSGD::getTermCriteria() private static native double[] getTermCriteria_0(long nativeObj); // C++: void cv::ml::SVMSGD::setTermCriteria(TermCriteria val) private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); // native support for java finalize() private static native void delete(long nativeObj); }