// // This file is auto-generated. Please don't modify it! // package org.opencv.objdetect; import org.opencv.core.Mat; import org.opencv.core.MatOfDouble; import org.opencv.core.MatOfFloat; import org.opencv.core.MatOfPoint; import org.opencv.core.MatOfRect; import org.opencv.core.Size; // C++: class HOGDescriptor /** * Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector. * * the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs CITE: Dalal2005 . * * useful links: * * https://hal.inria.fr/inria-00548512/document/ * * https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients * * https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor * * http://www.learnopencv.com/histogram-of-oriented-gradients * * http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial */ public class HOGDescriptor { protected final long nativeObj; protected HOGDescriptor(long addr) { nativeObj = addr; } public long getNativeObjAddr() { return nativeObj; } // internal usage only public static HOGDescriptor __fromPtr__(long addr) { return new HOGDescriptor(addr); } // C++: enum <unnamed> public static final int DEFAULT_NLEVELS = 64; // C++: enum DescriptorStorageFormat (cv.HOGDescriptor.DescriptorStorageFormat) public static final int DESCR_FORMAT_COL_BY_COL = 0, DESCR_FORMAT_ROW_BY_ROW = 1; // C++: enum HistogramNormType (cv.HOGDescriptor.HistogramNormType) public static final int L2Hys = 0; // // C++: cv::HOGDescriptor::HOGDescriptor() // /** * Creates the HOG descriptor and detector with default parameters. * * aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 ) */ public HOGDescriptor() { nativeObj = HOGDescriptor_0(); } // // C++: cv::HOGDescriptor::HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture = 1, double _winSigma = -1, HOGDescriptor_HistogramNormType _histogramNormType = HOGDescriptor::L2Hys, double _L2HysThreshold = 0.2, bool _gammaCorrection = false, int _nlevels = HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient = false) // /** * * @param _winSize sets winSize with given value. * @param _blockSize sets blockSize with given value. * @param _blockStride sets blockStride with given value. * @param _cellSize sets cellSize with given value. * @param _nbins sets nbins with given value. * @param _derivAperture sets derivAperture with given value. * @param _winSigma sets winSigma with given value. * @param _histogramNormType sets histogramNormType with given value. * @param _L2HysThreshold sets L2HysThreshold with given value. * @param _gammaCorrection sets gammaCorrection with given value. * @param _nlevels sets nlevels with given value. * @param _signedGradient sets signedGradient with given value. */ public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels, boolean _signedGradient) { nativeObj = HOGDescriptor_1(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold, _gammaCorrection, _nlevels, _signedGradient); } /** * * @param _winSize sets winSize with given value. * @param _blockSize sets blockSize with given value. * @param _blockStride sets blockStride with given value. * @param _cellSize sets cellSize with given value. * @param _nbins sets nbins with given value. * @param _derivAperture sets derivAperture with given value. * @param _winSigma sets winSigma with given value. * @param _histogramNormType sets histogramNormType with given value. * @param _L2HysThreshold sets L2HysThreshold with given value. * @param _gammaCorrection sets gammaCorrection with given value. * @param _nlevels sets nlevels with given value. */ public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels) { nativeObj = HOGDescriptor_2(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold, _gammaCorrection, _nlevels); } /** * * @param _winSize sets winSize with given value. * @param _blockSize sets blockSize with given value. * @param _blockStride sets blockStride with given value. * @param _cellSize sets cellSize with given value. * @param _nbins sets nbins with given value. * @param _derivAperture sets derivAperture with given value. * @param _winSigma sets winSigma with given value. * @param _histogramNormType sets histogramNormType with given value. * @param _L2HysThreshold sets L2HysThreshold with given value. * @param _gammaCorrection sets gammaCorrection with given value. */ public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection) { nativeObj = HOGDescriptor_3(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold, _gammaCorrection); } /** * * @param _winSize sets winSize with given value. * @param _blockSize sets blockSize with given value. * @param _blockStride sets blockStride with given value. * @param _cellSize sets cellSize with given value. * @param _nbins sets nbins with given value. * @param _derivAperture sets derivAperture with given value. * @param _winSigma sets winSigma with given value. * @param _histogramNormType sets histogramNormType with given value. * @param _L2HysThreshold sets L2HysThreshold with given value. */ public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold) { nativeObj = HOGDescriptor_4(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold); } /** * * @param _winSize sets winSize with given value. * @param _blockSize sets blockSize with given value. * @param _blockStride sets blockStride with given value. * @param _cellSize sets cellSize with given value. * @param _nbins sets nbins with given value. * @param _derivAperture sets derivAperture with given value. * @param _winSigma sets winSigma with given value. * @param _histogramNormType sets histogramNormType with given value. */ public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType) { nativeObj = HOGDescriptor_5(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType); } /** * * @param _winSize sets winSize with given value. * @param _blockSize sets blockSize with given value. * @param _blockStride sets blockStride with given value. * @param _cellSize sets cellSize with given value. * @param _nbins sets nbins with given value. * @param _derivAperture sets derivAperture with given value. * @param _winSigma sets winSigma with given value. */ public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma) { nativeObj = HOGDescriptor_6(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma); } /** * * @param _winSize sets winSize with given value. * @param _blockSize sets blockSize with given value. * @param _blockStride sets blockStride with given value. * @param _cellSize sets cellSize with given value. * @param _nbins sets nbins with given value. * @param _derivAperture sets derivAperture with given value. */ public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture) { nativeObj = HOGDescriptor_7(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture); } /** * * @param _winSize sets winSize with given value. * @param _blockSize sets blockSize with given value. * @param _blockStride sets blockStride with given value. * @param _cellSize sets cellSize with given value. * @param _nbins sets nbins with given value. */ public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins) { nativeObj = HOGDescriptor_8(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins); } // // C++: cv::HOGDescriptor::HOGDescriptor(String filename) // /** * * * Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file. * @param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier. */ public HOGDescriptor(String filename) { nativeObj = HOGDescriptor_9(filename); } // // C++: size_t cv::HOGDescriptor::getDescriptorSize() // /** * Returns the number of coefficients required for the classification. * @return automatically generated */ public long getDescriptorSize() { return getDescriptorSize_0(nativeObj); } // // C++: bool cv::HOGDescriptor::checkDetectorSize() // /** * Checks if detector size equal to descriptor size. * @return automatically generated */ public boolean checkDetectorSize() { return checkDetectorSize_0(nativeObj); } // // C++: double cv::HOGDescriptor::getWinSigma() // /** * Returns winSigma value * @return automatically generated */ public double getWinSigma() { return getWinSigma_0(nativeObj); } // // C++: void cv::HOGDescriptor::setSVMDetector(Mat svmdetector) // /** * Sets coefficients for the linear SVM classifier. * @param svmdetector coefficients for the linear SVM classifier. */ public void setSVMDetector(Mat svmdetector) { setSVMDetector_0(nativeObj, svmdetector.nativeObj); } // // C++: bool cv::HOGDescriptor::load(String filename, String objname = String()) // /** * loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file * @param filename Name of the file to read. * @param objname The optional name of the node to read (if empty, the first top-level node will be used). * @return automatically generated */ public boolean load(String filename, String objname) { return load_0(nativeObj, filename, objname); } /** * loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file * @param filename Name of the file to read. * @return automatically generated */ public boolean load(String filename) { return load_1(nativeObj, filename); } // // C++: void cv::HOGDescriptor::save(String filename, String objname = String()) // /** * saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file * @param filename File name * @param objname Object name */ public void save(String filename, String objname) { save_0(nativeObj, filename, objname); } /** * saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file * @param filename File name */ public void save(String filename) { save_1(nativeObj, filename); } // // C++: void cv::HOGDescriptor::compute(Mat img, vector_float& descriptors, Size winStride = Size(), Size padding = Size(), vector_Point locations = std::vector<Point>()) // /** * Computes HOG descriptors of given image. * @param img Matrix of the type CV_8U containing an image where HOG features will be calculated. * @param descriptors Matrix of the type CV_32F * @param winStride Window stride. It must be a multiple of block stride. * @param padding Padding * @param locations Vector of Point */ public void compute(Mat img, MatOfFloat descriptors, Size winStride, Size padding, MatOfPoint locations) { Mat descriptors_mat = descriptors; Mat locations_mat = locations; compute_0(nativeObj, img.nativeObj, descriptors_mat.nativeObj, winStride.width, winStride.height, padding.width, padding.height, locations_mat.nativeObj); } /** * Computes HOG descriptors of given image. * @param img Matrix of the type CV_8U containing an image where HOG features will be calculated. * @param descriptors Matrix of the type CV_32F * @param winStride Window stride. It must be a multiple of block stride. * @param padding Padding */ public void compute(Mat img, MatOfFloat descriptors, Size winStride, Size padding) { Mat descriptors_mat = descriptors; compute_1(nativeObj, img.nativeObj, descriptors_mat.nativeObj, winStride.width, winStride.height, padding.width, padding.height); } /** * Computes HOG descriptors of given image. * @param img Matrix of the type CV_8U containing an image where HOG features will be calculated. * @param descriptors Matrix of the type CV_32F * @param winStride Window stride. It must be a multiple of block stride. */ public void compute(Mat img, MatOfFloat descriptors, Size winStride) { Mat descriptors_mat = descriptors; compute_2(nativeObj, img.nativeObj, descriptors_mat.nativeObj, winStride.width, winStride.height); } /** * Computes HOG descriptors of given image. * @param img Matrix of the type CV_8U containing an image where HOG features will be calculated. * @param descriptors Matrix of the type CV_32F */ public void compute(Mat img, MatOfFloat descriptors) { Mat descriptors_mat = descriptors; compute_3(nativeObj, img.nativeObj, descriptors_mat.nativeObj); } // // C++: void cv::HOGDescriptor::detect(Mat img, vector_Point& foundLocations, vector_double& weights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), vector_Point searchLocations = std::vector<Point>()) // /** * Performs object detection without a multi-scale window. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. * @param weights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * @param winStride Window stride. It must be a multiple of block stride. * @param padding Padding * @param searchLocations Vector of Point includes set of requested locations to be evaluated. */ public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, Size winStride, Size padding, MatOfPoint searchLocations) { Mat foundLocations_mat = foundLocations; Mat weights_mat = weights; Mat searchLocations_mat = searchLocations; detect_0(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height, searchLocations_mat.nativeObj); } /** * Performs object detection without a multi-scale window. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. * @param weights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * @param winStride Window stride. It must be a multiple of block stride. * @param padding Padding */ public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, Size winStride, Size padding) { Mat foundLocations_mat = foundLocations; Mat weights_mat = weights; detect_1(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height); } /** * Performs object detection without a multi-scale window. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. * @param weights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * @param winStride Window stride. It must be a multiple of block stride. */ public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, Size winStride) { Mat foundLocations_mat = foundLocations; Mat weights_mat = weights; detect_2(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj, hitThreshold, winStride.width, winStride.height); } /** * Performs object detection without a multi-scale window. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. * @param weights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. */ public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold) { Mat foundLocations_mat = foundLocations; Mat weights_mat = weights; detect_3(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj, hitThreshold); } /** * Performs object detection without a multi-scale window. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. * @param weights Vector that will contain confidence values for each detected object. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. */ public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights) { Mat foundLocations_mat = foundLocations; Mat weights_mat = weights; detect_4(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj); } // // C++: void cv::HOGDescriptor::detectMultiScale(Mat img, vector_Rect& foundLocations, vector_double& foundWeights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), double scale = 1.05, double groupThreshold = 2.0, bool useMeanshiftGrouping = false) // /** * Detects objects of different sizes in the input image. The detected objects are returned as a list * of rectangles. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of rectangles where each rectangle contains the detected object. * @param foundWeights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * @param winStride Window stride. It must be a multiple of block stride. * @param padding Padding * @param scale Coefficient of the detection window increase. * @param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered * by many rectangles. 0 means not to perform grouping. * @param useMeanshiftGrouping indicates grouping algorithm */ public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding, double scale, double groupThreshold, boolean useMeanshiftGrouping) { Mat foundLocations_mat = foundLocations; Mat foundWeights_mat = foundWeights; detectMultiScale_0(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height, scale, groupThreshold, useMeanshiftGrouping); } /** * Detects objects of different sizes in the input image. The detected objects are returned as a list * of rectangles. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of rectangles where each rectangle contains the detected object. * @param foundWeights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * @param winStride Window stride. It must be a multiple of block stride. * @param padding Padding * @param scale Coefficient of the detection window increase. * @param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered * by many rectangles. 0 means not to perform grouping. */ public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding, double scale, double groupThreshold) { Mat foundLocations_mat = foundLocations; Mat foundWeights_mat = foundWeights; detectMultiScale_1(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height, scale, groupThreshold); } /** * Detects objects of different sizes in the input image. The detected objects are returned as a list * of rectangles. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of rectangles where each rectangle contains the detected object. * @param foundWeights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * @param winStride Window stride. It must be a multiple of block stride. * @param padding Padding * @param scale Coefficient of the detection window increase. * by many rectangles. 0 means not to perform grouping. */ public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding, double scale) { Mat foundLocations_mat = foundLocations; Mat foundWeights_mat = foundWeights; detectMultiScale_2(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height, scale); } /** * Detects objects of different sizes in the input image. The detected objects are returned as a list * of rectangles. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of rectangles where each rectangle contains the detected object. * @param foundWeights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * @param winStride Window stride. It must be a multiple of block stride. * @param padding Padding * by many rectangles. 0 means not to perform grouping. */ public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding) { Mat foundLocations_mat = foundLocations; Mat foundWeights_mat = foundWeights; detectMultiScale_3(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height); } /** * Detects objects of different sizes in the input image. The detected objects are returned as a list * of rectangles. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of rectangles where each rectangle contains the detected object. * @param foundWeights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * @param winStride Window stride. It must be a multiple of block stride. * by many rectangles. 0 means not to perform grouping. */ public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride) { Mat foundLocations_mat = foundLocations; Mat foundWeights_mat = foundWeights; detectMultiScale_4(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height); } /** * Detects objects of different sizes in the input image. The detected objects are returned as a list * of rectangles. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of rectangles where each rectangle contains the detected object. * @param foundWeights Vector that will contain confidence values for each detected object. * @param hitThreshold Threshold for the distance between features and SVM classifying plane. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * by many rectangles. 0 means not to perform grouping. */ public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold) { Mat foundLocations_mat = foundLocations; Mat foundWeights_mat = foundWeights; detectMultiScale_5(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold); } /** * Detects objects of different sizes in the input image. The detected objects are returned as a list * of rectangles. * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. * @param foundLocations Vector of rectangles where each rectangle contains the detected object. * @param foundWeights Vector that will contain confidence values for each detected object. * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). * But if the free coefficient is omitted (which is allowed), you can specify it manually here. * by many rectangles. 0 means not to perform grouping. */ public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights) { Mat foundLocations_mat = foundLocations; Mat foundWeights_mat = foundWeights; detectMultiScale_6(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj); } // // C++: void cv::HOGDescriptor::computeGradient(Mat img, Mat& grad, Mat& angleOfs, Size paddingTL = Size(), Size paddingBR = Size()) // /** * Computes gradients and quantized gradient orientations. * @param img Matrix contains the image to be computed * @param grad Matrix of type CV_32FC2 contains computed gradients * @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations * @param paddingTL Padding from top-left * @param paddingBR Padding from bottom-right */ public void computeGradient(Mat img, Mat grad, Mat angleOfs, Size paddingTL, Size paddingBR) { computeGradient_0(nativeObj, img.nativeObj, grad.nativeObj, angleOfs.nativeObj, paddingTL.width, paddingTL.height, paddingBR.width, paddingBR.height); } /** * Computes gradients and quantized gradient orientations. * @param img Matrix contains the image to be computed * @param grad Matrix of type CV_32FC2 contains computed gradients * @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations * @param paddingTL Padding from top-left */ public void computeGradient(Mat img, Mat grad, Mat angleOfs, Size paddingTL) { computeGradient_1(nativeObj, img.nativeObj, grad.nativeObj, angleOfs.nativeObj, paddingTL.width, paddingTL.height); } /** * Computes gradients and quantized gradient orientations. * @param img Matrix contains the image to be computed * @param grad Matrix of type CV_32FC2 contains computed gradients * @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations */ public void computeGradient(Mat img, Mat grad, Mat angleOfs) { computeGradient_2(nativeObj, img.nativeObj, grad.nativeObj, angleOfs.nativeObj); } // // C++: static vector_float cv::HOGDescriptor::getDefaultPeopleDetector() // /** * Returns coefficients of the classifier trained for people detection (for 64x128 windows). * @return automatically generated */ public static MatOfFloat getDefaultPeopleDetector() { return MatOfFloat.fromNativeAddr(getDefaultPeopleDetector_0()); } // // C++: static vector_float cv::HOGDescriptor::getDaimlerPeopleDetector() // /** * Returns coefficients of the classifier trained for people detection (for 48x96 windows). * @return automatically generated */ public static MatOfFloat getDaimlerPeopleDetector() { return MatOfFloat.fromNativeAddr(getDaimlerPeopleDetector_0()); } // // C++: Size HOGDescriptor::winSize // public Size get_winSize() { return new Size(get_winSize_0(nativeObj)); } // // C++: Size HOGDescriptor::blockSize // public Size get_blockSize() { return new Size(get_blockSize_0(nativeObj)); } // // C++: Size HOGDescriptor::blockStride // public Size get_blockStride() { return new Size(get_blockStride_0(nativeObj)); } // // C++: Size HOGDescriptor::cellSize // public Size get_cellSize() { return new Size(get_cellSize_0(nativeObj)); } // // C++: int HOGDescriptor::nbins // public int get_nbins() { return get_nbins_0(nativeObj); } // // C++: int HOGDescriptor::derivAperture // public int get_derivAperture() { return get_derivAperture_0(nativeObj); } // // C++: double HOGDescriptor::winSigma // public double get_winSigma() { return get_winSigma_0(nativeObj); } // // C++: HOGDescriptor_HistogramNormType HOGDescriptor::histogramNormType // public int get_histogramNormType() { return get_histogramNormType_0(nativeObj); } // // C++: double HOGDescriptor::L2HysThreshold // public double get_L2HysThreshold() { return get_L2HysThreshold_0(nativeObj); } // // C++: bool HOGDescriptor::gammaCorrection // public boolean get_gammaCorrection() { return get_gammaCorrection_0(nativeObj); } // // C++: vector_float HOGDescriptor::svmDetector // public MatOfFloat get_svmDetector() { return MatOfFloat.fromNativeAddr(get_svmDetector_0(nativeObj)); } // // C++: int HOGDescriptor::nlevels // public int get_nlevels() { return get_nlevels_0(nativeObj); } // // C++: bool HOGDescriptor::signedGradient // public boolean get_signedGradient() { return get_signedGradient_0(nativeObj); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: cv::HOGDescriptor::HOGDescriptor() private static native long HOGDescriptor_0(); // C++: cv::HOGDescriptor::HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture = 1, double _winSigma = -1, HOGDescriptor_HistogramNormType _histogramNormType = HOGDescriptor::L2Hys, double _L2HysThreshold = 0.2, bool _gammaCorrection = false, int _nlevels = HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient = false) private static native long HOGDescriptor_1(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels, boolean _signedGradient); private static native long HOGDescriptor_2(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels); private static native long HOGDescriptor_3(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection); private static native long HOGDescriptor_4(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold); private static native long HOGDescriptor_5(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType); private static native long HOGDescriptor_6(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma); private static native long HOGDescriptor_7(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture); private static native long HOGDescriptor_8(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins); // C++: cv::HOGDescriptor::HOGDescriptor(String filename) private static native long HOGDescriptor_9(String filename); // C++: size_t cv::HOGDescriptor::getDescriptorSize() private static native long getDescriptorSize_0(long nativeObj); // C++: bool cv::HOGDescriptor::checkDetectorSize() private static native boolean checkDetectorSize_0(long nativeObj); // C++: double cv::HOGDescriptor::getWinSigma() private static native double getWinSigma_0(long nativeObj); // C++: void cv::HOGDescriptor::setSVMDetector(Mat svmdetector) private static native void setSVMDetector_0(long nativeObj, long svmdetector_nativeObj); // C++: bool cv::HOGDescriptor::load(String filename, String objname = String()) private static native boolean load_0(long nativeObj, String filename, String objname); private static native boolean load_1(long nativeObj, String filename); // C++: void cv::HOGDescriptor::save(String filename, String objname = String()) private static native void save_0(long nativeObj, String filename, String objname); private static native void save_1(long nativeObj, String filename); // C++: void cv::HOGDescriptor::compute(Mat img, vector_float& descriptors, Size winStride = Size(), Size padding = Size(), vector_Point locations = std::vector<Point>()) private static native void compute_0(long nativeObj, long img_nativeObj, long descriptors_mat_nativeObj, double winStride_width, double winStride_height, double padding_width, double padding_height, long locations_mat_nativeObj); private static native void compute_1(long nativeObj, long img_nativeObj, long descriptors_mat_nativeObj, double winStride_width, double winStride_height, double padding_width, double padding_height); private static native void compute_2(long nativeObj, long img_nativeObj, long descriptors_mat_nativeObj, double winStride_width, double winStride_height); private static native void compute_3(long nativeObj, long img_nativeObj, long descriptors_mat_nativeObj); // C++: void cv::HOGDescriptor::detect(Mat img, vector_Point& foundLocations, vector_double& weights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), vector_Point searchLocations = std::vector<Point>()) private static native void detect_0(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height, long searchLocations_mat_nativeObj); private static native void detect_1(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height); private static native void detect_2(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height); private static native void detect_3(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj, double hitThreshold); private static native void detect_4(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj); // C++: void cv::HOGDescriptor::detectMultiScale(Mat img, vector_Rect& foundLocations, vector_double& foundWeights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), double scale = 1.05, double groupThreshold = 2.0, bool useMeanshiftGrouping = false) private static native void detectMultiScale_0(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height, double scale, double groupThreshold, boolean useMeanshiftGrouping); private static native void detectMultiScale_1(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height, double scale, double groupThreshold); private static native void detectMultiScale_2(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height, double scale); private static native void detectMultiScale_3(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height); private static native void detectMultiScale_4(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height); private static native void detectMultiScale_5(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold); private static native void detectMultiScale_6(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj); // C++: void cv::HOGDescriptor::computeGradient(Mat img, Mat& grad, Mat& angleOfs, Size paddingTL = Size(), Size paddingBR = Size()) private static native void computeGradient_0(long nativeObj, long img_nativeObj, long grad_nativeObj, long angleOfs_nativeObj, double paddingTL_width, double paddingTL_height, double paddingBR_width, double paddingBR_height); private static native void computeGradient_1(long nativeObj, long img_nativeObj, long grad_nativeObj, long angleOfs_nativeObj, double paddingTL_width, double paddingTL_height); private static native void computeGradient_2(long nativeObj, long img_nativeObj, long grad_nativeObj, long angleOfs_nativeObj); // C++: static vector_float cv::HOGDescriptor::getDefaultPeopleDetector() private static native long getDefaultPeopleDetector_0(); // C++: static vector_float cv::HOGDescriptor::getDaimlerPeopleDetector() private static native long getDaimlerPeopleDetector_0(); // C++: Size HOGDescriptor::winSize private static native double[] get_winSize_0(long nativeObj); // C++: Size HOGDescriptor::blockSize private static native double[] get_blockSize_0(long nativeObj); // C++: Size HOGDescriptor::blockStride private static native double[] get_blockStride_0(long nativeObj); // C++: Size HOGDescriptor::cellSize private static native double[] get_cellSize_0(long nativeObj); // C++: int HOGDescriptor::nbins private static native int get_nbins_0(long nativeObj); // C++: int HOGDescriptor::derivAperture private static native int get_derivAperture_0(long nativeObj); // C++: double HOGDescriptor::winSigma private static native double get_winSigma_0(long nativeObj); // C++: HOGDescriptor_HistogramNormType HOGDescriptor::histogramNormType private static native int get_histogramNormType_0(long nativeObj); // C++: double HOGDescriptor::L2HysThreshold private static native double get_L2HysThreshold_0(long nativeObj); // C++: bool HOGDescriptor::gammaCorrection private static native boolean get_gammaCorrection_0(long nativeObj); // C++: vector_float HOGDescriptor::svmDetector private static native long get_svmDetector_0(long nativeObj); // C++: int HOGDescriptor::nlevels private static native int get_nlevels_0(long nativeObj); // C++: bool HOGDescriptor::signedGradient private static native boolean get_signedGradient_0(long nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }