/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_KMEANS_INDEX_H_ #define OPENCV_FLANN_KMEANS_INDEX_H_ //! @cond IGNORED #include <algorithm> #include <map> #include <limits> #include <cmath> #include "general.h" #include "nn_index.h" #include "dist.h" #include "matrix.h" #include "result_set.h" #include "heap.h" #include "allocator.h" #include "random.h" #include "saving.h" #include "logger.h" #define BITS_PER_CHAR 8 #define BITS_PER_BASE 2 // for DNA/RNA sequences #define BASE_PER_CHAR (BITS_PER_CHAR/BITS_PER_BASE) #define HISTOS_PER_BASE (1<<BITS_PER_BASE) namespace cvflann { struct KMeansIndexParams : public IndexParams { KMeansIndexParams(int branching = 32, int iterations = 11, flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2, int trees = 1 ) { (*this)["algorithm"] = FLANN_INDEX_KMEANS; // branching factor (*this)["branching"] = branching; // max iterations to perform in one kmeans clustering (kmeans tree) (*this)["iterations"] = iterations; // algorithm used for picking the initial cluster centers for kmeans tree (*this)["centers_init"] = centers_init; // cluster boundary index. Used when searching the kmeans tree (*this)["cb_index"] = cb_index; // number of kmeans trees to search in (*this)["trees"] = trees; } }; /** * Hierarchical kmeans index * * Contains a tree constructed through a hierarchical kmeans clustering * and other information for indexing a set of points for nearest-neighbour matching. */ template <typename Distance> class KMeansIndex : public NNIndex<Distance> { public: typedef typename Distance::ElementType ElementType; typedef typename Distance::ResultType DistanceType; typedef typename Distance::CentersType CentersType; typedef typename Distance::is_kdtree_distance is_kdtree_distance; typedef typename Distance::is_vector_space_distance is_vector_space_distance; typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&); /** * The function used for choosing the cluster centers. */ centersAlgFunction chooseCenters; /** * Chooses the initial centers in the k-means clustering in a random manner. * * Params: * k = number of centers * vecs = the dataset of points * indices = indices in the dataset * indices_length = length of indices vector * */ void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length) { UniqueRandom r(indices_length); int index; for (index=0; index<k; ++index) { bool duplicate = true; int rnd; while (duplicate) { duplicate = false; rnd = r.next(); if (rnd<0) { centers_length = index; return; } centers[index] = indices[rnd]; for (int j=0; j<index; ++j) { DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols); if (sq<1e-16) { duplicate = true; } } } } centers_length = index; } /** * Chooses the initial centers in the k-means using Gonzales' algorithm * so that the centers are spaced apart from each other. * * Params: * k = number of centers * vecs = the dataset of points * indices = indices in the dataset * Returns: */ void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length) { int n = indices_length; int rnd = rand_int(n); CV_DbgAssert(rnd >=0 && rnd < n); centers[0] = indices[rnd]; int index; for (index=1; index<k; ++index) { int best_index = -1; DistanceType best_val = 0; for (int j=0; j<n; ++j) { DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols); for (int i=1; i<index; ++i) { DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols); if (tmp_dist<dist) { dist = tmp_dist; } } if (dist>best_val) { best_val = dist; best_index = j; } } if (best_index!=-1) { centers[index] = indices[best_index]; } else { break; } } centers_length = index; } /** * Chooses the initial centers in the k-means using the algorithm * proposed in the KMeans++ paper: * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding * * Implementation of this function was converted from the one provided in Arthur's code. * * Params: * k = number of centers * vecs = the dataset of points * indices = indices in the dataset * Returns: */ void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length) { int n = indices_length; double currentPot = 0; DistanceType* closestDistSq = new DistanceType[n]; // Choose one random center and set the closestDistSq values int index = rand_int(n); CV_DbgAssert(index >=0 && index < n); centers[0] = indices[index]; for (int i = 0; i < n; i++) { closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] ); currentPot += closestDistSq[i]; } const int numLocalTries = 1; // Choose each center int centerCount; for (centerCount = 1; centerCount < k; centerCount++) { // Repeat several trials double bestNewPot = -1; int bestNewIndex = -1; for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { // Choose our center - have to be slightly careful to return a valid answer even accounting // for possible rounding errors double randVal = rand_double(currentPot); for (index = 0; index < n-1; index++) { if (randVal <= closestDistSq[index]) break; else randVal -= closestDistSq[index]; } // Compute the new potential double newPot = 0; for (int i = 0; i < n; i++) { DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); } // Store the best result if ((bestNewPot < 0)||(newPot < bestNewPot)) { bestNewPot = newPot; bestNewIndex = index; } } // Add the appropriate center centers[centerCount] = indices[bestNewIndex]; currentPot = bestNewPot; for (int i = 0; i < n; i++) { DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols); closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); } } centers_length = centerCount; delete[] closestDistSq; } public: flann_algorithm_t getType() const CV_OVERRIDE { return FLANN_INDEX_KMEANS; } template<class CentersContainerType> class KMeansDistanceComputer : public cv::ParallelLoopBody { public: KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset, const int _branching, const int* _indices, const CentersContainerType& _dcenters, const size_t _veclen, std::vector<int> &_new_centroids, std::vector<DistanceType> &_sq_dists) : distance(_distance) , dataset(_dataset) , branching(_branching) , indices(_indices) , dcenters(_dcenters) , veclen(_veclen) , new_centroids(_new_centroids) , sq_dists(_sq_dists) { } void operator()(const cv::Range& range) const CV_OVERRIDE { const int begin = range.start; const int end = range.end; for( int i = begin; i<end; ++i) { DistanceType sq_dist(distance(dataset[indices[i]], dcenters[0], veclen)); int new_centroid(0); for (int j=1; j<branching; ++j) { DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen); if (sq_dist>new_sq_dist) { new_centroid = j; sq_dist = new_sq_dist; } } sq_dists[i] = sq_dist; new_centroids[i] = new_centroid; } } private: Distance distance; const Matrix<ElementType>& dataset; const int branching; const int* indices; const CentersContainerType& dcenters; const size_t veclen; std::vector<int> &new_centroids; std::vector<DistanceType> &sq_dists; KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; } }; /** * Index constructor * * Params: * inputData = dataset with the input features * params = parameters passed to the hierarchical k-means algorithm */ KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(), Distance d = Distance()) : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d) { memoryCounter_ = 0; size_ = dataset_.rows; veclen_ = dataset_.cols; branching_ = get_param(params,"branching",32); trees_ = get_param(params,"trees",1); iterations_ = get_param(params,"iterations",11); if (iterations_<0) { iterations_ = (std::numeric_limits<int>::max)(); } centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM); if (centers_init_==FLANN_CENTERS_RANDOM) { chooseCenters = &KMeansIndex::chooseCentersRandom; } else if (centers_init_==FLANN_CENTERS_GONZALES) { chooseCenters = &KMeansIndex::chooseCentersGonzales; } else if (centers_init_==FLANN_CENTERS_KMEANSPP) { chooseCenters = &KMeansIndex::chooseCentersKMeanspp; } else { FLANN_THROW(cv::Error::StsBadArg, "Unknown algorithm for choosing initial centers."); } cb_index_ = 0.4f; root_ = new KMeansNodePtr[trees_]; indices_ = new int*[trees_]; for (int i=0; i<trees_; ++i) { root_[i] = NULL; indices_[i] = NULL; } } KMeansIndex(const KMeansIndex&); KMeansIndex& operator=(const KMeansIndex&); /** * Index destructor. * * Release the memory used by the index. */ virtual ~KMeansIndex() { if (root_ != NULL) { free_centers(); delete[] root_; } if (indices_!=NULL) { free_indices(); delete[] indices_; } } /** * Returns size of index. */ size_t size() const CV_OVERRIDE { return size_; } /** * Returns the length of an index feature. */ size_t veclen() const CV_OVERRIDE { return veclen_; } void set_cb_index( float index) { cb_index_ = index; } /** * Computes the inde memory usage * Returns: memory used by the index */ int usedMemory() const CV_OVERRIDE { return pool_.usedMemory+pool_.wastedMemory+memoryCounter_; } /** * Builds the index */ void buildIndex() CV_OVERRIDE { if (branching_<2) { FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2"); } free_indices(); for (int i=0; i<trees_; ++i) { indices_[i] = new int[size_]; for (size_t j=0; j<size_; ++j) { indices_[i][j] = int(j); } root_[i] = pool_.allocate<KMeansNode>(); std::memset(root_[i], 0, sizeof(KMeansNode)); Distance* dummy = NULL; computeNodeStatistics(root_[i], indices_[i], (unsigned int)size_, dummy); computeClustering(root_[i], indices_[i], (int)size_, branching_,0); } } void saveIndex(FILE* stream) CV_OVERRIDE { save_value(stream, branching_); save_value(stream, iterations_); save_value(stream, memoryCounter_); save_value(stream, cb_index_); save_value(stream, trees_); for (int i=0; i<trees_; ++i) { save_value(stream, *indices_[i], (int)size_); save_tree(stream, root_[i], i); } } void loadIndex(FILE* stream) CV_OVERRIDE { if (indices_!=NULL) { free_indices(); delete[] indices_; } if (root_!=NULL) { free_centers(); } load_value(stream, branching_); load_value(stream, iterations_); load_value(stream, memoryCounter_); load_value(stream, cb_index_); load_value(stream, trees_); indices_ = new int*[trees_]; for (int i=0; i<trees_; ++i) { indices_[i] = new int[size_]; load_value(stream, *indices_[i], size_); load_tree(stream, root_[i], i); } index_params_["algorithm"] = getType(); index_params_["branching"] = branching_; index_params_["trees"] = trees_; index_params_["iterations"] = iterations_; index_params_["centers_init"] = centers_init_; index_params_["cb_index"] = cb_index_; } /** * Find set of nearest neighbors to vec. Their indices are stored inside * the result object. * * Params: * result = the result object in which the indices of the nearest-neighbors are stored * vec = the vector for which to search the nearest neighbors * searchParams = parameters that influence the search algorithm (checks, cb_index) */ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE { const int maxChecks = get_param(searchParams,"checks",32); if (maxChecks==FLANN_CHECKS_UNLIMITED) { findExactNN(root_[0], result, vec); } else { // Priority queue storing intermediate branches in the best-bin-first search const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_); int checks = 0; for (int i=0; i<trees_; ++i) { findNN(root_[i], result, vec, checks, maxChecks, heap); if ((checks >= maxChecks) && result.full()) break; } BranchSt branch; while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { KMeansNodePtr node = branch.node; findNN(node, result, vec, checks, maxChecks, heap); } CV_Assert(result.full()); } } /** * Clustering function that takes a cut in the hierarchical k-means * tree and return the clusters centers of that clustering. * Params: * numClusters = number of clusters to have in the clustering computed * Returns: number of cluster centers */ int getClusterCenters(Matrix<CentersType>& centers) { int numClusters = centers.rows; if (numClusters<1) { FLANN_THROW(cv::Error::StsBadArg, "Number of clusters must be at least 1"); } DistanceType variance; KMeansNodePtr* clusters = new KMeansNodePtr[numClusters]; int clusterCount = getMinVarianceClusters(root_[0], clusters, numClusters, variance); Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount); for (int i=0; i<clusterCount; ++i) { CentersType* center = clusters[i]->pivot; for (size_t j=0; j<veclen_; ++j) { centers[i][j] = center[j]; } } delete[] clusters; return clusterCount; } IndexParams getParameters() const CV_OVERRIDE { return index_params_; } private: /** * Structure representing a node in the hierarchical k-means tree. */ struct KMeansNode { /** * The cluster center. */ CentersType* pivot; /** * The cluster radius. */ DistanceType radius; /** * The cluster mean radius. */ DistanceType mean_radius; /** * The cluster variance. */ DistanceType variance; /** * The cluster size (number of points in the cluster) */ int size; /** * Child nodes (only for non-terminal nodes) */ KMeansNode** childs; /** * Node points (only for terminal nodes) */ int* indices; /** * Level */ int level; }; typedef KMeansNode* KMeansNodePtr; /** * Alias definition for a nicer syntax. */ typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt; void save_tree(FILE* stream, KMeansNodePtr node, int num) { save_value(stream, *node); save_value(stream, *(node->pivot), (int)veclen_); if (node->childs==NULL) { int indices_offset = (int)(node->indices - indices_[num]); save_value(stream, indices_offset); } else { for(int i=0; i<branching_; ++i) { save_tree(stream, node->childs[i], num); } } } void load_tree(FILE* stream, KMeansNodePtr& node, int num) { node = pool_.allocate<KMeansNode>(); load_value(stream, *node); node->pivot = new CentersType[veclen_]; load_value(stream, *(node->pivot), (int)veclen_); if (node->childs==NULL) { int indices_offset; load_value(stream, indices_offset); node->indices = indices_[num] + indices_offset; } else { node->childs = pool_.allocate<KMeansNodePtr>(branching_); for(int i=0; i<branching_; ++i) { load_tree(stream, node->childs[i], num); } } } /** * Helper function */ void free_centers(KMeansNodePtr node) { delete[] node->pivot; if (node->childs!=NULL) { for (int k=0; k<branching_; ++k) { free_centers(node->childs[k]); } } } void free_centers() { if (root_ != NULL) { for(int i=0; i<trees_; ++i) { if (root_[i] != NULL) { free_centers(root_[i]); } } } } /** * Release the inner elements of indices[] */ void free_indices() { if (indices_!=NULL) { for(int i=0; i<trees_; ++i) { if (indices_[i]!=NULL) { delete[] indices_[i]; indices_[i] = NULL; } } } } /** * Computes the statistics of a node (mean, radius, variance). * * Params: * node = the node to use * indices = array of indices of the points belonging to the node * indices_length = number of indices in the array */ void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length) { DistanceType variance = 0; CentersType* mean = new CentersType[veclen_]; memoryCounter_ += int(veclen_*sizeof(CentersType)); memset(mean,0,veclen_*sizeof(CentersType)); for (unsigned int i=0; i<indices_length; ++i) { ElementType* vec = dataset_[indices[i]]; for (size_t j=0; j<veclen_; ++j) { mean[j] += vec[j]; } variance += distance_(vec, ZeroIterator<ElementType>(), veclen_); } float length = static_cast<float>(indices_length); for (size_t j=0; j<veclen_; ++j) { mean[j] = cvflann::round<CentersType>( mean[j] / static_cast<double>(indices_length) ); } variance /= static_cast<DistanceType>( length ); variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_); DistanceType radius = 0; for (unsigned int i=0; i<indices_length; ++i) { DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_); if (tmp>radius) { radius = tmp; } } node->variance = variance; node->radius = radius; node->pivot = mean; } void computeBitfieldNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length) { const unsigned int accumulator_veclen = static_cast<unsigned int>( veclen_*sizeof(CentersType)*BITS_PER_CHAR); unsigned long long variance = 0ull; CentersType* mean = new CentersType[veclen_]; memoryCounter_ += int(veclen_*sizeof(CentersType)); unsigned int* mean_accumulator = new unsigned int[accumulator_veclen]; memset(mean_accumulator, 0, sizeof(unsigned int)*accumulator_veclen); for (unsigned int i=0; i<indices_length; ++i) { variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>( distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_))); unsigned char* vec = (unsigned char*)dataset_[indices[i]]; for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) { mean_accumulator[k] += (vec[l]) & 0x01; mean_accumulator[k+1] += (vec[l]>>1) & 0x01; mean_accumulator[k+2] += (vec[l]>>2) & 0x01; mean_accumulator[k+3] += (vec[l]>>3) & 0x01; mean_accumulator[k+4] += (vec[l]>>4) & 0x01; mean_accumulator[k+5] += (vec[l]>>5) & 0x01; mean_accumulator[k+6] += (vec[l]>>6) & 0x01; mean_accumulator[k+7] += (vec[l]>>7) & 0x01; } } double cnt = static_cast<double>(indices_length); unsigned char* char_mean = (unsigned char*)mean; for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) { char_mean[l] = static_cast<unsigned char>( (((int)(0.5 + (double)(mean_accumulator[k]) / cnt))) | (((int)(0.5 + (double)(mean_accumulator[k+1]) / cnt))<<1) | (((int)(0.5 + (double)(mean_accumulator[k+2]) / cnt))<<2) | (((int)(0.5 + (double)(mean_accumulator[k+3]) / cnt))<<3) | (((int)(0.5 + (double)(mean_accumulator[k+4]) / cnt))<<4) | (((int)(0.5 + (double)(mean_accumulator[k+5]) / cnt))<<5) | (((int)(0.5 + (double)(mean_accumulator[k+6]) / cnt))<<6) | (((int)(0.5 + (double)(mean_accumulator[k+7]) / cnt))<<7)); } variance = static_cast<unsigned long long>( 0.5 + static_cast<double>(variance) / static_cast<double>(indices_length)); variance -= static_cast<unsigned long long>( ensureSquareDistance<Distance>( distance_(mean, ZeroIterator<ElementType>(), veclen_))); DistanceType radius = 0; for (unsigned int i=0; i<indices_length; ++i) { DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_); if (tmp>radius) { radius = tmp; } } node->variance = static_cast<DistanceType>(variance); node->radius = radius; node->pivot = mean; delete[] mean_accumulator; } void computeDnaNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length) { const unsigned int histos_veclen = static_cast<unsigned int>( veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR)); unsigned long long variance = 0ull; unsigned int* histograms = new unsigned int[histos_veclen]; memset(histograms, 0, sizeof(unsigned int)*histos_veclen); for (unsigned int i=0; i<indices_length; ++i) { variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>( distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_))); unsigned char* vec = (unsigned char*)dataset_[indices[i]]; for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) { histograms[k + ((vec[l]) & 0x03)]++; histograms[k + 4 + ((vec[l]>>2) & 0x03)]++; histograms[k + 8 + ((vec[l]>>4) & 0x03)]++; histograms[k +12 + ((vec[l]>>6) & 0x03)]++; } } CentersType* mean = new CentersType[veclen_]; memoryCounter_ += int(veclen_*sizeof(CentersType)); unsigned char* char_mean = (unsigned char*)mean; unsigned int* h = histograms; for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) { char_mean[l] = (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k] > h[k+2] ? 0x00 : 0x10 : h[k] > h[k+3] ? 0x00 : 0x11 : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10 : h[k+1] > h[k+3] ? 0x01 : 0x11) | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00 : 0x1000 : h[k+4] > h[k+7] ? 0x00 : 0x1100 : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000 : h[k+5] > h[k+7] ? 0x0100 : 0x1100) | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00 : 0x100000 : h[k+8] >h[k+11] ? 0x00 : 0x110000 : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000 : h[k+9] >h[k+11] ? 0x010000 : 0x110000) | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00 : 0x10000000 : h[k+12] >h[k+15] ? 0x00 : 0x11000000 : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000 : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000); } variance = static_cast<unsigned long long>( 0.5 + static_cast<double>(variance) / static_cast<double>(indices_length)); variance -= static_cast<unsigned long long>( ensureSquareDistance<Distance>( distance_(mean, ZeroIterator<ElementType>(), veclen_))); DistanceType radius = 0; for (unsigned int i=0; i<indices_length; ++i) { DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_); if (tmp>radius) { radius = tmp; } } node->variance = static_cast<DistanceType>(variance); node->radius = radius; node->pivot = mean; delete[] histograms; } template<typename DistType> void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length, const DistType* identifier) { (void)identifier; computeNodeStatistics(node, indices, indices_length); } void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length, const cvflann::HammingLUT* identifier) { (void)identifier; computeBitfieldNodeStatistics(node, indices, indices_length); } void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length, const cvflann::Hamming<unsigned char>* identifier) { (void)identifier; computeBitfieldNodeStatistics(node, indices, indices_length); } void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length, const cvflann::Hamming2<unsigned char>* identifier) { (void)identifier; computeBitfieldNodeStatistics(node, indices, indices_length); } void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length, const cvflann::DNAmmingLUT* identifier) { (void)identifier; computeDnaNodeStatistics(node, indices, indices_length); } void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length, const cvflann::DNAmming2<unsigned char>* identifier) { (void)identifier; computeDnaNodeStatistics(node, indices, indices_length); } void refineClustering(int* indices, int indices_length, int branching, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count) { cv::AutoBuffer<double> dcenters_buf(branching*veclen_); Matrix<double> dcenters(dcenters_buf.data(), branching, veclen_); bool converged = false; int iteration = 0; while (!converged && iteration<iterations_) { converged = true; iteration++; // compute the new cluster centers for (int i=0; i<branching; ++i) { memset(dcenters[i],0,sizeof(double)*veclen_); radiuses[i] = 0; } for (int i=0; i<indices_length; ++i) { ElementType* vec = dataset_[indices[i]]; double* center = dcenters[belongs_to[i]]; for (size_t k=0; k<veclen_; ++k) { center[k] += vec[k]; } } for (int i=0; i<branching; ++i) { int cnt = count[i]; for (size_t k=0; k<veclen_; ++k) { dcenters[i][k] /= cnt; } } std::vector<int> new_centroids(indices_length); std::vector<DistanceType> sq_dists(indices_length); // reassign points to clusters KMeansDistanceComputer<Matrix<double> > invoker( distance_, dataset_, branching, indices, dcenters, veclen_, new_centroids, sq_dists); parallel_for_(cv::Range(0, (int)indices_length), invoker); for (int i=0; i < (int)indices_length; ++i) { DistanceType sq_dist(sq_dists[i]); int new_centroid(new_centroids[i]); if (sq_dist > radiuses[new_centroid]) { radiuses[new_centroid] = sq_dist; } if (new_centroid != belongs_to[i]) { count[belongs_to[i]]--; count[new_centroid]++; belongs_to[i] = new_centroid; converged = false; } } for (int i=0; i<branching; ++i) { // if one cluster converges to an empty cluster, // move an element into that cluster if (count[i]==0) { int j = (i+1)%branching; while (count[j]<=1) { j = (j+1)%branching; } for (int k=0; k<indices_length; ++k) { if (belongs_to[k]==j) { // for cluster j, we move the furthest element from the center to the empty cluster i if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) { belongs_to[k] = i; count[j]--; count[i]++; break; } } } converged = false; } } } for (int i=0; i<branching; ++i) { centers[i] = new CentersType[veclen_]; memoryCounter_ += (int)(veclen_*sizeof(CentersType)); for (size_t k=0; k<veclen_; ++k) { centers[i][k] = (CentersType)dcenters[i][k]; } } } void refineBitfieldClustering(int* indices, int indices_length, int branching, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count) { for (int i=0; i<branching; ++i) { centers[i] = new CentersType[veclen_]; memoryCounter_ += (int)(veclen_*sizeof(CentersType)); } const unsigned int accumulator_veclen = static_cast<unsigned int>( veclen_*sizeof(ElementType)*BITS_PER_CHAR); cv::AutoBuffer<unsigned int> dcenters_buf(branching*accumulator_veclen); Matrix<unsigned int> dcenters(dcenters_buf.data(), branching, accumulator_veclen); bool converged = false; int iteration = 0; while (!converged && iteration<iterations_) { converged = true; iteration++; // compute the new cluster centers for (int i=0; i<branching; ++i) { memset(dcenters[i],0,sizeof(unsigned int)*accumulator_veclen); radiuses[i] = 0; } for (int i=0; i<indices_length; ++i) { unsigned char* vec = (unsigned char*)dataset_[indices[i]]; unsigned int* dcenter = dcenters[belongs_to[i]]; for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) { dcenter[k] += (vec[l]) & 0x01; dcenter[k+1] += (vec[l]>>1) & 0x01; dcenter[k+2] += (vec[l]>>2) & 0x01; dcenter[k+3] += (vec[l]>>3) & 0x01; dcenter[k+4] += (vec[l]>>4) & 0x01; dcenter[k+5] += (vec[l]>>5) & 0x01; dcenter[k+6] += (vec[l]>>6) & 0x01; dcenter[k+7] += (vec[l]>>7) & 0x01; } } for (int i=0; i<branching; ++i) { double cnt = static_cast<double>(count[i]); unsigned int* dcenter = dcenters[i]; unsigned char* charCenter = (unsigned char*)centers[i]; for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) { charCenter[l] = static_cast<unsigned char>( (((int)(0.5 + (double)(dcenter[k]) / cnt))) | (((int)(0.5 + (double)(dcenter[k+1]) / cnt))<<1) | (((int)(0.5 + (double)(dcenter[k+2]) / cnt))<<2) | (((int)(0.5 + (double)(dcenter[k+3]) / cnt))<<3) | (((int)(0.5 + (double)(dcenter[k+4]) / cnt))<<4) | (((int)(0.5 + (double)(dcenter[k+5]) / cnt))<<5) | (((int)(0.5 + (double)(dcenter[k+6]) / cnt))<<6) | (((int)(0.5 + (double)(dcenter[k+7]) / cnt))<<7)); } } std::vector<int> new_centroids(indices_length); std::vector<DistanceType> dists(indices_length); // reassign points to clusters KMeansDistanceComputer<ElementType**> invoker( distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists); parallel_for_(cv::Range(0, (int)indices_length), invoker); for (int i=0; i < indices_length; ++i) { DistanceType dist(dists[i]); int new_centroid(new_centroids[i]); if (dist > radiuses[new_centroid]) { radiuses[new_centroid] = dist; } if (new_centroid != belongs_to[i]) { count[belongs_to[i]]--; count[new_centroid]++; belongs_to[i] = new_centroid; converged = false; } } for (int i=0; i<branching; ++i) { // if one cluster converges to an empty cluster, // move an element into that cluster if (count[i]==0) { int j = (i+1)%branching; while (count[j]<=1) { j = (j+1)%branching; } for (int k=0; k<indices_length; ++k) { if (belongs_to[k]==j) { // for cluster j, we move the furthest element from the center to the empty cluster i if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) { belongs_to[k] = i; count[j]--; count[i]++; break; } } } converged = false; } } } } void refineDnaClustering(int* indices, int indices_length, int branching, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count) { for (int i=0; i<branching; ++i) { centers[i] = new CentersType[veclen_]; memoryCounter_ += (int)(veclen_*sizeof(CentersType)); } const unsigned int histos_veclen = static_cast<unsigned int>( veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR)); cv::AutoBuffer<unsigned int> histos_buf(branching*histos_veclen); Matrix<unsigned int> histos(histos_buf.data(), branching, histos_veclen); bool converged = false; int iteration = 0; while (!converged && iteration<iterations_) { converged = true; iteration++; // compute the new cluster centers for (int i=0; i<branching; ++i) { memset(histos[i],0,sizeof(unsigned int)*histos_veclen); radiuses[i] = 0; } for (int i=0; i<indices_length; ++i) { unsigned char* vec = (unsigned char*)dataset_[indices[i]]; unsigned int* h = histos[belongs_to[i]]; for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) { h[k + ((vec[l]) & 0x03)]++; h[k + 4 + ((vec[l]>>2) & 0x03)]++; h[k + 8 + ((vec[l]>>4) & 0x03)]++; h[k +12 + ((vec[l]>>6) & 0x03)]++; } } for (int i=0; i<branching; ++i) { unsigned int* h = histos[i]; unsigned char* charCenter = (unsigned char*)centers[i]; for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) { charCenter[l]= (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k] > h[k+2] ? 0x00 : 0x10 : h[k] > h[k+3] ? 0x00 : 0x11 : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10 : h[k+1] > h[k+3] ? 0x01 : 0x11) | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00 : 0x1000 : h[k+4] > h[k+7] ? 0x00 : 0x1100 : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000 : h[k+5] > h[k+7] ? 0x0100 : 0x1100) | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00 : 0x100000 : h[k+8] >h[k+11] ? 0x00 : 0x110000 : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000 : h[k+9] >h[k+11] ? 0x010000 : 0x110000) | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00 : 0x10000000 : h[k+12] >h[k+15] ? 0x00 : 0x11000000 : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000 : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000); } } std::vector<int> new_centroids(indices_length); std::vector<DistanceType> dists(indices_length); // reassign points to clusters KMeansDistanceComputer<ElementType**> invoker( distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists); parallel_for_(cv::Range(0, (int)indices_length), invoker); for (int i=0; i < indices_length; ++i) { DistanceType dist(dists[i]); int new_centroid(new_centroids[i]); if (dist > radiuses[new_centroid]) { radiuses[new_centroid] = dist; } if (new_centroid != belongs_to[i]) { count[belongs_to[i]]--; count[new_centroid]++; belongs_to[i] = new_centroid; converged = false; } } for (int i=0; i<branching; ++i) { // if one cluster converges to an empty cluster, // move an element into that cluster if (count[i]==0) { int j = (i+1)%branching; while (count[j]<=1) { j = (j+1)%branching; } for (int k=0; k<indices_length; ++k) { if (belongs_to[k]==j) { // for cluster j, we move the furthest element from the center to the empty cluster i if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) { belongs_to[k] = i; count[j]--; count[i]++; break; } } } converged = false; } } } } void computeSubClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count) { // compute kmeans clustering for each of the resulting clusters node->childs = pool_.allocate<KMeansNodePtr>(branching); int start = 0; int end = start; for (int c=0; c<branching; ++c) { int s = count[c]; DistanceType variance = 0; DistanceType mean_radius =0; for (int i=0; i<indices_length; ++i) { if (belongs_to[i]==c) { DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_); variance += d; mean_radius += static_cast<DistanceType>( sqrt(d) ); std::swap(indices[i],indices[end]); std::swap(belongs_to[i],belongs_to[end]); end++; } } variance /= s; mean_radius /= s; variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_); node->childs[c] = pool_.allocate<KMeansNode>(); std::memset(node->childs[c], 0, sizeof(KMeansNode)); node->childs[c]->radius = radiuses[c]; node->childs[c]->pivot = centers[c]; node->childs[c]->variance = variance; node->childs[c]->mean_radius = mean_radius; computeClustering(node->childs[c],indices+start, end-start, branching, level+1); start=end; } } void computeAnyBitfieldSubClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count) { // compute kmeans clustering for each of the resulting clusters node->childs = pool_.allocate<KMeansNodePtr>(branching); int start = 0; int end = start; for (int c=0; c<branching; ++c) { int s = count[c]; unsigned long long variance = 0ull; DistanceType mean_radius =0; for (int i=0; i<indices_length; ++i) { if (belongs_to[i]==c) { DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_); variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(d) ); mean_radius += ensureSimpleDistance<Distance>(d); std::swap(indices[i],indices[end]); std::swap(belongs_to[i],belongs_to[end]); end++; } } mean_radius = static_cast<DistanceType>( 0.5f + static_cast<float>(mean_radius) / static_cast<float>(s)); variance = static_cast<unsigned long long>( 0.5 + static_cast<double>(variance) / static_cast<double>(s)); variance -= static_cast<unsigned long long>( ensureSquareDistance<Distance>( distance_(centers[c], ZeroIterator<ElementType>(), veclen_))); node->childs[c] = pool_.allocate<KMeansNode>(); std::memset(node->childs[c], 0, sizeof(KMeansNode)); node->childs[c]->radius = radiuses[c]; node->childs[c]->pivot = centers[c]; node->childs[c]->variance = static_cast<DistanceType>(variance); node->childs[c]->mean_radius = mean_radius; computeClustering(node->childs[c],indices+start, end-start, branching, level+1); start=end; } } template<typename DistType> void refineAndSplitClustering( KMeansNodePtr node, int* indices, int indices_length, int branching, int level, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count, const DistType* identifier) { (void)identifier; refineClustering(indices, indices_length, branching, centers, radiuses, belongs_to, count); computeSubClustering(node, indices, indices_length, branching, level, centers, radiuses, belongs_to, count); } /** * The methods responsible with doing the recursive hierarchical clustering on * binary vectors. * As some might have heard that KMeans on binary data doesn't make sense, * it's worth a little explanation why it actually fairly works. As * with the Hierarchical Clustering algortihm, we seed several centers for the * current node by picking some of its points. Then in a first pass each point * of the node is then related to its closest center. Now let's have a look at * the 5 central dimensions of the 9 following points: * * xxxxxx11100xxxxx (1) * xxxxxx11010xxxxx (2) * xxxxxx11001xxxxx (3) * xxxxxx10110xxxxx (4) * xxxxxx10101xxxxx (5) * xxxxxx10011xxxxx (6) * xxxxxx01110xxxxx (7) * xxxxxx01101xxxxx (8) * xxxxxx01011xxxxx (9) * sum _____ * of 1: 66555 * * Even if the barycenter notion doesn't apply, we can set a center * xxxxxx11111xxxxx that will better fit the five dimensions we are focusing * on for these points. * * Note that convergence isn't ensured anymore. In practice, using Gonzales * as seeding algorithm should be fine for getting convergence ("iterations" * value can be set to -1). But with KMeans++ seeding you should definitely * set a maximum number of iterations (but make it higher than the "iterations" * default value of 11). * * Params: * node = the node to cluster * indices = indices of the points belonging to the current node * indices_length = number of points in the current node * branching = the branching factor to use in the clustering * level = 0 for the root node, it increases with the subdivision levels * centers = clusters centers to compute * radiuses = radiuses of clusters * belongs_to = LookUp Table returning, for a given indice id, the center id it belongs to * count = array storing the number of indices for a given center id * identifier = dummy pointer on an instance of Distance (use to branch correctly among templates) */ void refineAndSplitClustering( KMeansNodePtr node, int* indices, int indices_length, int branching, int level, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count, const cvflann::HammingLUT* identifier) { (void)identifier; refineBitfieldClustering( indices, indices_length, branching, centers, radiuses, belongs_to, count); computeAnyBitfieldSubClustering(node, indices, indices_length, branching, level, centers, radiuses, belongs_to, count); } void refineAndSplitClustering( KMeansNodePtr node, int* indices, int indices_length, int branching, int level, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count, const cvflann::Hamming<unsigned char>* identifier) { (void)identifier; refineBitfieldClustering( indices, indices_length, branching, centers, radiuses, belongs_to, count); computeAnyBitfieldSubClustering(node, indices, indices_length, branching, level, centers, radiuses, belongs_to, count); } void refineAndSplitClustering( KMeansNodePtr node, int* indices, int indices_length, int branching, int level, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count, const cvflann::Hamming2<unsigned char>* identifier) { (void)identifier; refineBitfieldClustering( indices, indices_length, branching, centers, radiuses, belongs_to, count); computeAnyBitfieldSubClustering(node, indices, indices_length, branching, level, centers, radiuses, belongs_to, count); } void refineAndSplitClustering( KMeansNodePtr node, int* indices, int indices_length, int branching, int level, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count, const cvflann::DNAmmingLUT* identifier) { (void)identifier; refineDnaClustering( indices, indices_length, branching, centers, radiuses, belongs_to, count); computeAnyBitfieldSubClustering(node, indices, indices_length, branching, level, centers, radiuses, belongs_to, count); } void refineAndSplitClustering( KMeansNodePtr node, int* indices, int indices_length, int branching, int level, CentersType** centers, std::vector<DistanceType>& radiuses, int* belongs_to, int* count, const cvflann::DNAmming2<unsigned char>* identifier) { (void)identifier; refineDnaClustering( indices, indices_length, branching, centers, radiuses, belongs_to, count); computeAnyBitfieldSubClustering(node, indices, indices_length, branching, level, centers, radiuses, belongs_to, count); } /** * The method responsible with actually doing the recursive hierarchical * clustering * * Params: * node = the node to cluster * indices = indices of the points belonging to the current node * branching = the branching factor to use in the clustering * * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) */ void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level) { node->size = indices_length; node->level = level; if (indices_length < branching) { node->indices = indices; std::sort(node->indices,node->indices+indices_length); node->childs = NULL; return; } cv::AutoBuffer<int> centers_idx_buf(branching); int* centers_idx = centers_idx_buf.data(); int centers_length; (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); if (centers_length<branching) { node->indices = indices; std::sort(node->indices,node->indices+indices_length); node->childs = NULL; return; } std::vector<DistanceType> radiuses(branching); cv::AutoBuffer<int> count_buf(branching); int* count = count_buf.data(); for (int i=0; i<branching; ++i) { radiuses[i] = 0; count[i] = 0; } // assign points to clusters cv::AutoBuffer<int> belongs_to_buf(indices_length); int* belongs_to = belongs_to_buf.data(); for (int i=0; i<indices_length; ++i) { DistanceType sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[0]], veclen_); belongs_to[i] = 0; for (int j=1; j<branching; ++j) { DistanceType new_sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[j]], veclen_); if (sq_dist>new_sq_dist) { belongs_to[i] = j; sq_dist = new_sq_dist; } } if (sq_dist>radiuses[belongs_to[i]]) { radiuses[belongs_to[i]] = sq_dist; } count[belongs_to[i]]++; } CentersType** centers = new CentersType*[branching]; Distance* dummy = NULL; refineAndSplitClustering(node, indices, indices_length, branching, level, centers, radiuses, belongs_to, count, dummy); delete[] centers; } /** * Performs one descent in the hierarchical k-means tree. The branches not * visited are stored in a priority queue. * * Params: * node = node to explore * result = container for the k-nearest neighbors found * vec = query points * checks = how many points in the dataset have been checked so far * maxChecks = maximum dataset points to checks */ void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks, const cv::Ptr<Heap<BranchSt>>& heap) { // Ignore those clusters that are too far away { DistanceType bsq = distance_(vec, node->pivot, veclen_); DistanceType rsq = node->radius; DistanceType wsq = result.worstDist(); if (isSquareDistance<Distance>()) { DistanceType val = bsq-rsq-wsq; if ((val>0) && (val*val > 4*rsq*wsq)) return; } else { if (bsq-rsq > wsq) return; } } if (node->childs==NULL) { if ((checks>=maxChecks) && result.full()) { return; } checks += node->size; for (int i=0; i<node->size; ++i) { int index = node->indices[i]; DistanceType dist = distance_(dataset_[index], vec, veclen_); result.addPoint(dist, index); } } else { DistanceType* domain_distances = new DistanceType[branching_]; int closest_center = exploreNodeBranches(node, vec, domain_distances, heap); delete[] domain_distances; findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap); } } /** * Helper function that computes the nearest childs of a node to a given query point. * Params: * node = the node * q = the query point * distances = array with the distances to each child node. * Returns: */ int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, const cv::Ptr<Heap<BranchSt>>& heap) { int best_index = 0; domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_); for (int i=1; i<branching_; ++i) { domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_); if (domain_distances[i]<domain_distances[best_index]) { best_index = i; } } // float* best_center = node->childs[best_index]->pivot; for (int i=0; i<branching_; ++i) { if (i != best_index) { domain_distances[i] -= cvflann::round<DistanceType>( cb_index_*node->childs[i]->variance ); // float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q); // if (domain_distances[i]<dist_to_border) { // domain_distances[i] = dist_to_border; // } heap->insert(BranchSt(node->childs[i],domain_distances[i])); } } return best_index; } /** * Function the performs exact nearest neighbor search by traversing the entire tree. */ void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec) { // Ignore those clusters that are too far away { DistanceType bsq = distance_(vec, node->pivot, veclen_); DistanceType rsq = node->radius; DistanceType wsq = result.worstDist(); if (isSquareDistance<Distance>()) { DistanceType val = bsq-rsq-wsq; if ((val>0) && (val*val > 4*rsq*wsq)) return; } else { if (bsq-rsq > wsq) return; } } if (node->childs==NULL) { for (int i=0; i<node->size; ++i) { int index = node->indices[i]; DistanceType dist = distance_(dataset_[index], vec, veclen_); result.addPoint(dist, index); } } else { int* sort_indices = new int[branching_]; getCenterOrdering(node, vec, sort_indices); for (int i=0; i<branching_; ++i) { findExactNN(node->childs[sort_indices[i]],result,vec); } delete[] sort_indices; } } /** * Helper function. * * I computes the order in which to traverse the child nodes of a particular node. */ void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices) { DistanceType* domain_distances = new DistanceType[branching_]; for (int i=0; i<branching_; ++i) { DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_); int j=0; while (domain_distances[j]<dist && j<i) j++; for (int k=i; k>j; --k) { domain_distances[k] = domain_distances[k-1]; sort_indices[k] = sort_indices[k-1]; } domain_distances[j] = dist; sort_indices[j] = i; } delete[] domain_distances; } /** * Method that computes the squared distance from the query point q * from inside region with center c to the border between this * region and the region with center p */ DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q) { DistanceType sum = 0; DistanceType sum2 = 0; for (int i=0; i<veclen_; ++i) { DistanceType t = c[i]-p[i]; sum += t*(q[i]-(c[i]+p[i])/2); sum2 += t*t; } return sum*sum/sum2; } /** * Helper function the descends in the hierarchical k-means tree by splitting those clusters that minimize * the overall variance of the clustering. * Params: * root = root node * clusters = array with clusters centers (return value) * varianceValue = variance of the clustering (return value) * Returns: */ int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue) { int clusterCount = 1; clusters[0] = root; DistanceType meanVariance = root->variance*root->size; while (clusterCount<clusters_length) { DistanceType minVariance = (std::numeric_limits<DistanceType>::max)(); int splitIndex = -1; for (int i=0; i<clusterCount; ++i) { if (clusters[i]->childs != NULL) { DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size; for (int j=0; j<branching_; ++j) { variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size; } if (variance<minVariance) { minVariance = variance; splitIndex = i; } } } if (splitIndex==-1) break; if ( (branching_+clusterCount-1) > clusters_length) break; meanVariance = minVariance; // split node KMeansNodePtr toSplit = clusters[splitIndex]; clusters[splitIndex] = toSplit->childs[0]; for (int i=1; i<branching_; ++i) { clusters[clusterCount++] = toSplit->childs[i]; } } varianceValue = meanVariance/root->size; return clusterCount; } private: /** The branching factor used in the hierarchical k-means clustering */ int branching_; /** Number of kmeans trees (default is one) */ int trees_; /** Maximum number of iterations to use when performing k-means clustering */ int iterations_; /** Algorithm for choosing the cluster centers */ flann_centers_init_t centers_init_; /** * Cluster border index. This is used in the tree search phase when determining * the closest cluster to explore next. A zero value takes into account only * the cluster centres, a value greater then zero also take into account the size * of the cluster. */ float cb_index_; /** * The dataset used by this index */ const Matrix<ElementType> dataset_; /** Index parameters */ IndexParams index_params_; /** * Number of features in the dataset. */ size_t size_; /** * Length of each feature. */ size_t veclen_; /** * The root node in the tree. */ KMeansNodePtr* root_; /** * Array of indices to vectors in the dataset. */ int** indices_; /** * The distance */ Distance distance_; /** * Pooled memory allocator. */ PooledAllocator pool_; /** * Memory occupied by the index. */ int memoryCounter_; }; } //! @endcond #endif //OPENCV_FLANN_KMEANS_INDEX_H_