// // This file is auto-generated. Please don't modify it! // package org.opencv.ml; import org.opencv.core.Mat; import org.opencv.core.TermCriteria; import org.opencv.ml.LogisticRegression; import org.opencv.ml.StatModel; // C++: class LogisticRegression /** * Implements Logistic Regression classifier. * * SEE: REF: ml_intro_lr */ public class LogisticRegression extends StatModel { protected LogisticRegression(long addr) { super(addr); } // internal usage only public static LogisticRegression __fromPtr__(long addr) { return new LogisticRegression(addr); } // C++: enum Methods (cv.ml.LogisticRegression.Methods) public static final int BATCH = 0, MINI_BATCH = 1; // C++: enum RegKinds (cv.ml.LogisticRegression.RegKinds) public static final int REG_DISABLE = -1, REG_L1 = 0, REG_L2 = 1; // // C++: double cv::ml::LogisticRegression::getLearningRate() // /** * SEE: setLearningRate * @return automatically generated */ public double getLearningRate() { return getLearningRate_0(nativeObj); } // // C++: void cv::ml::LogisticRegression::setLearningRate(double val) // /** * getLearningRate SEE: getLearningRate * @param val automatically generated */ public void setLearningRate(double val) { setLearningRate_0(nativeObj, val); } // // C++: int cv::ml::LogisticRegression::getIterations() // /** * SEE: setIterations * @return automatically generated */ public int getIterations() { return getIterations_0(nativeObj); } // // C++: void cv::ml::LogisticRegression::setIterations(int val) // /** * getIterations SEE: getIterations * @param val automatically generated */ public void setIterations(int val) { setIterations_0(nativeObj, val); } // // C++: int cv::ml::LogisticRegression::getRegularization() // /** * SEE: setRegularization * @return automatically generated */ public int getRegularization() { return getRegularization_0(nativeObj); } // // C++: void cv::ml::LogisticRegression::setRegularization(int val) // /** * getRegularization SEE: getRegularization * @param val automatically generated */ public void setRegularization(int val) { setRegularization_0(nativeObj, val); } // // C++: int cv::ml::LogisticRegression::getTrainMethod() // /** * SEE: setTrainMethod * @return automatically generated */ public int getTrainMethod() { return getTrainMethod_0(nativeObj); } // // C++: void cv::ml::LogisticRegression::setTrainMethod(int val) // /** * getTrainMethod SEE: getTrainMethod * @param val automatically generated */ public void setTrainMethod(int val) { setTrainMethod_0(nativeObj, val); } // // C++: int cv::ml::LogisticRegression::getMiniBatchSize() // /** * SEE: setMiniBatchSize * @return automatically generated */ public int getMiniBatchSize() { return getMiniBatchSize_0(nativeObj); } // // C++: void cv::ml::LogisticRegression::setMiniBatchSize(int val) // /** * getMiniBatchSize SEE: getMiniBatchSize * @param val automatically generated */ public void setMiniBatchSize(int val) { setMiniBatchSize_0(nativeObj, val); } // // C++: TermCriteria cv::ml::LogisticRegression::getTermCriteria() // /** * SEE: setTermCriteria * @return automatically generated */ public TermCriteria getTermCriteria() { return new TermCriteria(getTermCriteria_0(nativeObj)); } // // C++: void cv::ml::LogisticRegression::setTermCriteria(TermCriteria val) // /** * getTermCriteria SEE: getTermCriteria * @param val automatically generated */ public void setTermCriteria(TermCriteria val) { setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); } // // C++: float cv::ml::LogisticRegression::predict(Mat samples, Mat& results = Mat(), int flags = 0) // /** * Predicts responses for input samples and returns a float type. * * @param samples The input data for the prediction algorithm. Matrix [m x n], where each row * contains variables (features) of one object being classified. Should have data type CV_32F. * @param results Predicted labels as a column matrix of type CV_32S. * @param flags Not used. * @return automatically generated */ public float predict(Mat samples, Mat results, int flags) { return predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags); } /** * Predicts responses for input samples and returns a float type. * * @param samples The input data for the prediction algorithm. Matrix [m x n], where each row * contains variables (features) of one object being classified. Should have data type CV_32F. * @param results Predicted labels as a column matrix of type CV_32S. * @return automatically generated */ public float predict(Mat samples, Mat results) { return predict_1(nativeObj, samples.nativeObj, results.nativeObj); } /** * Predicts responses for input samples and returns a float type. * * @param samples The input data for the prediction algorithm. Matrix [m x n], where each row * contains variables (features) of one object being classified. Should have data type CV_32F. * @return automatically generated */ public float predict(Mat samples) { return predict_2(nativeObj, samples.nativeObj); } // // C++: Mat cv::ml::LogisticRegression::get_learnt_thetas() // /** * This function returns the trained parameters arranged across rows. * * For a two class classification problem, it returns a row matrix. It returns learnt parameters of * the Logistic Regression as a matrix of type CV_32F. * @return automatically generated */ public Mat get_learnt_thetas() { return new Mat(get_learnt_thetas_0(nativeObj)); } // // C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::create() // /** * Creates empty model. * * Creates Logistic Regression model with parameters given. * @return automatically generated */ public static LogisticRegression create() { return LogisticRegression.__fromPtr__(create_0()); } // // C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::load(String filepath, String nodeName = String()) // /** * Loads and creates a serialized LogisticRegression from a file * * Use LogisticRegression::save to serialize and store an LogisticRegression to disk. * Load the LogisticRegression from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized LogisticRegression * @param nodeName name of node containing the classifier * @return automatically generated */ public static LogisticRegression load(String filepath, String nodeName) { return LogisticRegression.__fromPtr__(load_0(filepath, nodeName)); } /** * Loads and creates a serialized LogisticRegression from a file * * Use LogisticRegression::save to serialize and store an LogisticRegression to disk. * Load the LogisticRegression from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized LogisticRegression * @return automatically generated */ public static LogisticRegression load(String filepath) { return LogisticRegression.__fromPtr__(load_1(filepath)); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: double cv::ml::LogisticRegression::getLearningRate() private static native double getLearningRate_0(long nativeObj); // C++: void cv::ml::LogisticRegression::setLearningRate(double val) private static native void setLearningRate_0(long nativeObj, double val); // C++: int cv::ml::LogisticRegression::getIterations() private static native int getIterations_0(long nativeObj); // C++: void cv::ml::LogisticRegression::setIterations(int val) private static native void setIterations_0(long nativeObj, int val); // C++: int cv::ml::LogisticRegression::getRegularization() private static native int getRegularization_0(long nativeObj); // C++: void cv::ml::LogisticRegression::setRegularization(int val) private static native void setRegularization_0(long nativeObj, int val); // C++: int cv::ml::LogisticRegression::getTrainMethod() private static native int getTrainMethod_0(long nativeObj); // C++: void cv::ml::LogisticRegression::setTrainMethod(int val) private static native void setTrainMethod_0(long nativeObj, int val); // C++: int cv::ml::LogisticRegression::getMiniBatchSize() private static native int getMiniBatchSize_0(long nativeObj); // C++: void cv::ml::LogisticRegression::setMiniBatchSize(int val) private static native void setMiniBatchSize_0(long nativeObj, int val); // C++: TermCriteria cv::ml::LogisticRegression::getTermCriteria() private static native double[] getTermCriteria_0(long nativeObj); // C++: void cv::ml::LogisticRegression::setTermCriteria(TermCriteria val) private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); // C++: float cv::ml::LogisticRegression::predict(Mat samples, Mat& results = Mat(), int flags = 0) private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); private static native float predict_1(long nativeObj, long samples_nativeObj, long results_nativeObj); private static native float predict_2(long nativeObj, long samples_nativeObj); // C++: Mat cv::ml::LogisticRegression::get_learnt_thetas() private static native long get_learnt_thetas_0(long nativeObj); // C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::create() private static native long create_0(); // C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::load(String filepath, String nodeName = String()) private static native long load_0(String filepath, String nodeName); private static native long load_1(String filepath); // native support for java finalize() private static native void delete(long nativeObj); }