// // This file is auto-generated. Please don't modify it! // package org.opencv.ml; import org.opencv.core.Mat; import org.opencv.core.TermCriteria; import org.opencv.ml.ParamGrid; import org.opencv.ml.SVM; import org.opencv.ml.StatModel; // C++: class SVM /** * Support Vector Machines. * * SEE: REF: ml_intro_svm */ public class SVM extends StatModel { protected SVM(long addr) { super(addr); } // internal usage only public static SVM __fromPtr__(long addr) { return new SVM(addr); } // C++: enum KernelTypes (cv.ml.SVM.KernelTypes) public static final int CUSTOM = -1, LINEAR = 0, POLY = 1, RBF = 2, SIGMOID = 3, CHI2 = 4, INTER = 5; // C++: enum ParamTypes (cv.ml.SVM.ParamTypes) public static final int C = 0, GAMMA = 1, P = 2, NU = 3, COEF = 4, DEGREE = 5; // C++: enum Types (cv.ml.SVM.Types) public static final int C_SVC = 100, NU_SVC = 101, ONE_CLASS = 102, EPS_SVR = 103, NU_SVR = 104; // // C++: int cv::ml::SVM::getType() // /** * SEE: setType * @return automatically generated */ public int getType() { return getType_0(nativeObj); } // // C++: void cv::ml::SVM::setType(int val) // /** * getType SEE: getType * @param val automatically generated */ public void setType(int val) { setType_0(nativeObj, val); } // // C++: double cv::ml::SVM::getGamma() // /** * SEE: setGamma * @return automatically generated */ public double getGamma() { return getGamma_0(nativeObj); } // // C++: void cv::ml::SVM::setGamma(double val) // /** * getGamma SEE: getGamma * @param val automatically generated */ public void setGamma(double val) { setGamma_0(nativeObj, val); } // // C++: double cv::ml::SVM::getCoef0() // /** * SEE: setCoef0 * @return automatically generated */ public double getCoef0() { return getCoef0_0(nativeObj); } // // C++: void cv::ml::SVM::setCoef0(double val) // /** * getCoef0 SEE: getCoef0 * @param val automatically generated */ public void setCoef0(double val) { setCoef0_0(nativeObj, val); } // // C++: double cv::ml::SVM::getDegree() // /** * SEE: setDegree * @return automatically generated */ public double getDegree() { return getDegree_0(nativeObj); } // // C++: void cv::ml::SVM::setDegree(double val) // /** * getDegree SEE: getDegree * @param val automatically generated */ public void setDegree(double val) { setDegree_0(nativeObj, val); } // // C++: double cv::ml::SVM::getC() // /** * SEE: setC * @return automatically generated */ public double getC() { return getC_0(nativeObj); } // // C++: void cv::ml::SVM::setC(double val) // /** * getC SEE: getC * @param val automatically generated */ public void setC(double val) { setC_0(nativeObj, val); } // // C++: double cv::ml::SVM::getNu() // /** * SEE: setNu * @return automatically generated */ public double getNu() { return getNu_0(nativeObj); } // // C++: void cv::ml::SVM::setNu(double val) // /** * getNu SEE: getNu * @param val automatically generated */ public void setNu(double val) { setNu_0(nativeObj, val); } // // C++: double cv::ml::SVM::getP() // /** * SEE: setP * @return automatically generated */ public double getP() { return getP_0(nativeObj); } // // C++: void cv::ml::SVM::setP(double val) // /** * getP SEE: getP * @param val automatically generated */ public void setP(double val) { setP_0(nativeObj, val); } // // C++: Mat cv::ml::SVM::getClassWeights() // /** * SEE: setClassWeights * @return automatically generated */ public Mat getClassWeights() { return new Mat(getClassWeights_0(nativeObj)); } // // C++: void cv::ml::SVM::setClassWeights(Mat val) // /** * getClassWeights SEE: getClassWeights * @param val automatically generated */ public void setClassWeights(Mat val) { setClassWeights_0(nativeObj, val.nativeObj); } // // C++: TermCriteria cv::ml::SVM::getTermCriteria() // /** * SEE: setTermCriteria * @return automatically generated */ public TermCriteria getTermCriteria() { return new TermCriteria(getTermCriteria_0(nativeObj)); } // // C++: void cv::ml::SVM::setTermCriteria(TermCriteria val) // /** * getTermCriteria SEE: getTermCriteria * @param val automatically generated */ public void setTermCriteria(TermCriteria val) { setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); } // // C++: int cv::ml::SVM::getKernelType() // /** * Type of a %SVM kernel. * See SVM::KernelTypes. Default value is SVM::RBF. * @return automatically generated */ public int getKernelType() { return getKernelType_0(nativeObj); } // // C++: void cv::ml::SVM::setKernel(int kernelType) // /** * Initialize with one of predefined kernels. * See SVM::KernelTypes. * @param kernelType automatically generated */ public void setKernel(int kernelType) { setKernel_0(nativeObj, kernelType); } // // C++: bool cv::ml::SVM::trainAuto(Mat samples, int layout, Mat responses, int kFold = 10, Ptr_ParamGrid Cgrid = SVM::getDefaultGridPtr(SVM::C), Ptr_ParamGrid gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA), Ptr_ParamGrid pGrid = SVM::getDefaultGridPtr(SVM::P), Ptr_ParamGrid nuGrid = SVM::getDefaultGridPtr(SVM::NU), Ptr_ParamGrid coeffGrid = SVM::getDefaultGridPtr(SVM::COEF), Ptr_ParamGrid degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE), bool balanced = false) // /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * @param nuGrid grid for nu * @param coeffGrid grid for coeff * @param degreeGrid grid for degree * @param balanced If true and the problem is 2-class classification then the method creates more * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. * @return automatically generated */ public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid, ParamGrid nuGrid, ParamGrid coeffGrid, ParamGrid degreeGrid, boolean balanced) { return trainAuto_0(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr(), nuGrid.getNativeObjAddr(), coeffGrid.getNativeObjAddr(), degreeGrid.getNativeObjAddr(), balanced); } /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * @param nuGrid grid for nu * @param coeffGrid grid for coeff * @param degreeGrid grid for degree * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. * @return automatically generated */ public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid, ParamGrid nuGrid, ParamGrid coeffGrid, ParamGrid degreeGrid) { return trainAuto_1(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr(), nuGrid.getNativeObjAddr(), coeffGrid.getNativeObjAddr(), degreeGrid.getNativeObjAddr()); } /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * @param nuGrid grid for nu * @param coeffGrid grid for coeff * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. * @return automatically generated */ public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid, ParamGrid nuGrid, ParamGrid coeffGrid) { return trainAuto_2(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr(), nuGrid.getNativeObjAddr(), coeffGrid.getNativeObjAddr()); } /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * @param nuGrid grid for nu * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. * @return automatically generated */ public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid, ParamGrid nuGrid) { return trainAuto_3(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr(), nuGrid.getNativeObjAddr()); } /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. * @return automatically generated */ public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid) { return trainAuto_4(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr()); } /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. * @return automatically generated */ public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid) { return trainAuto_5(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr()); } /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. * @return automatically generated */ public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid) { return trainAuto_6(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr()); } /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. * @return automatically generated */ public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold) { return trainAuto_7(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold); } /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. * @return automatically generated */ public boolean trainAuto(Mat samples, int layout, Mat responses) { return trainAuto_8(nativeObj, samples.nativeObj, layout, responses.nativeObj); } // // C++: Mat cv::ml::SVM::getSupportVectors() // /** * Retrieves all the support vectors * * The method returns all the support vectors as a floating-point matrix, where support vectors are * stored as matrix rows. * @return automatically generated */ public Mat getSupportVectors() { return new Mat(getSupportVectors_0(nativeObj)); } // // C++: Mat cv::ml::SVM::getUncompressedSupportVectors() // /** * Retrieves all the uncompressed support vectors of a linear %SVM * * The method returns all the uncompressed support vectors of a linear %SVM that the compressed * support vector, used for prediction, was derived from. They are returned in a floating-point * matrix, where the support vectors are stored as matrix rows. * @return automatically generated */ public Mat getUncompressedSupportVectors() { return new Mat(getUncompressedSupportVectors_0(nativeObj)); } // // C++: double cv::ml::SVM::getDecisionFunction(int i, Mat& alpha, Mat& svidx) // /** * Retrieves the decision function * * @param i the index of the decision function. If the problem solved is regression, 1-class or * 2-class classification, then there will be just one decision function and the index should * always be 0. Otherwise, in the case of N-class classification, there will be \(N(N-1)/2\) * decision functions. * @param alpha the optional output vector for weights, corresponding to different support vectors. * In the case of linear %SVM all the alpha's will be 1's. * @param svidx the optional output vector of indices of support vectors within the matrix of * support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear * %SVM each decision function consists of a single "compressed" support vector. * * The method returns rho parameter of the decision function, a scalar subtracted from the weighted * sum of kernel responses. * @return automatically generated */ public double getDecisionFunction(int i, Mat alpha, Mat svidx) { return getDecisionFunction_0(nativeObj, i, alpha.nativeObj, svidx.nativeObj); } // // C++: static Ptr_ParamGrid cv::ml::SVM::getDefaultGridPtr(int param_id) // /** * Generates a grid for %SVM parameters. * * @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is * generated for the parameter with this ID. * * The function generates a grid pointer for the specified parameter of the %SVM algorithm. * The grid may be passed to the function SVM::trainAuto. * @return automatically generated */ public static ParamGrid getDefaultGridPtr(int param_id) { return ParamGrid.__fromPtr__(getDefaultGridPtr_0(param_id)); } // // C++: static Ptr_SVM cv::ml::SVM::create() // /** * Creates empty model. * Use StatModel::train to train the model. Since %SVM has several parameters, you may want to * find the best parameters for your problem, it can be done with SVM::trainAuto. * @return automatically generated */ public static SVM create() { return SVM.__fromPtr__(create_0()); } // // C++: static Ptr_SVM cv::ml::SVM::load(String filepath) // /** * Loads and creates a serialized svm from a file * * Use SVM::save to serialize and store an SVM to disk. * Load the SVM from this file again, by calling this function with the path to the file. * * @param filepath path to serialized svm * @return automatically generated */ public static SVM load(String filepath) { return SVM.__fromPtr__(load_0(filepath)); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: int cv::ml::SVM::getType() private static native int getType_0(long nativeObj); // C++: void cv::ml::SVM::setType(int val) private static native void setType_0(long nativeObj, int val); // C++: double cv::ml::SVM::getGamma() private static native double getGamma_0(long nativeObj); // C++: void cv::ml::SVM::setGamma(double val) private static native void setGamma_0(long nativeObj, double val); // C++: double cv::ml::SVM::getCoef0() private static native double getCoef0_0(long nativeObj); // C++: void cv::ml::SVM::setCoef0(double val) private static native void setCoef0_0(long nativeObj, double val); // C++: double cv::ml::SVM::getDegree() private static native double getDegree_0(long nativeObj); // C++: void cv::ml::SVM::setDegree(double val) private static native void setDegree_0(long nativeObj, double val); // C++: double cv::ml::SVM::getC() private static native double getC_0(long nativeObj); // C++: void cv::ml::SVM::setC(double val) private static native void setC_0(long nativeObj, double val); // C++: double cv::ml::SVM::getNu() private static native double getNu_0(long nativeObj); // C++: void cv::ml::SVM::setNu(double val) private static native void setNu_0(long nativeObj, double val); // C++: double cv::ml::SVM::getP() private static native double getP_0(long nativeObj); // C++: void cv::ml::SVM::setP(double val) private static native void setP_0(long nativeObj, double val); // C++: Mat cv::ml::SVM::getClassWeights() private static native long getClassWeights_0(long nativeObj); // C++: void cv::ml::SVM::setClassWeights(Mat val) private static native void setClassWeights_0(long nativeObj, long val_nativeObj); // C++: TermCriteria cv::ml::SVM::getTermCriteria() private static native double[] getTermCriteria_0(long nativeObj); // C++: void cv::ml::SVM::setTermCriteria(TermCriteria val) private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); // C++: int cv::ml::SVM::getKernelType() private static native int getKernelType_0(long nativeObj); // C++: void cv::ml::SVM::setKernel(int kernelType) private static native void setKernel_0(long nativeObj, int kernelType); // C++: bool cv::ml::SVM::trainAuto(Mat samples, int layout, Mat responses, int kFold = 10, Ptr_ParamGrid Cgrid = SVM::getDefaultGridPtr(SVM::C), Ptr_ParamGrid gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA), Ptr_ParamGrid pGrid = SVM::getDefaultGridPtr(SVM::P), Ptr_ParamGrid nuGrid = SVM::getDefaultGridPtr(SVM::NU), Ptr_ParamGrid coeffGrid = SVM::getDefaultGridPtr(SVM::COEF), Ptr_ParamGrid degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE), bool balanced = false) private static native boolean trainAuto_0(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj, long nuGrid_nativeObj, long coeffGrid_nativeObj, long degreeGrid_nativeObj, boolean balanced); private static native boolean trainAuto_1(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj, long nuGrid_nativeObj, long coeffGrid_nativeObj, long degreeGrid_nativeObj); private static native boolean trainAuto_2(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj, long nuGrid_nativeObj, long coeffGrid_nativeObj); private static native boolean trainAuto_3(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj, long nuGrid_nativeObj); private static native boolean trainAuto_4(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj); private static native boolean trainAuto_5(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj); private static native boolean trainAuto_6(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj); private static native boolean trainAuto_7(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold); private static native boolean trainAuto_8(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj); // C++: Mat cv::ml::SVM::getSupportVectors() private static native long getSupportVectors_0(long nativeObj); // C++: Mat cv::ml::SVM::getUncompressedSupportVectors() private static native long getUncompressedSupportVectors_0(long nativeObj); // C++: double cv::ml::SVM::getDecisionFunction(int i, Mat& alpha, Mat& svidx) private static native double getDecisionFunction_0(long nativeObj, int i, long alpha_nativeObj, long svidx_nativeObj); // C++: static Ptr_ParamGrid cv::ml::SVM::getDefaultGridPtr(int param_id) private static native long getDefaultGridPtr_0(int param_id); // C++: static Ptr_SVM cv::ml::SVM::create() private static native long create_0(); // C++: static Ptr_SVM cv::ml::SVM::load(String filepath) private static native long load_0(String filepath); // native support for java finalize() private static native void delete(long nativeObj); }