// // This file is auto-generated. Please don't modify it! // package org.opencv.ml; import java.util.ArrayList; import java.util.List; import org.opencv.core.Mat; import org.opencv.ml.TrainData; import org.opencv.utils.Converters; // C++: class TrainData /** * Class encapsulating training data. * * Please note that the class only specifies the interface of training data, but not implementation. * All the statistical model classes in _ml_ module accepts Ptr<TrainData> as parameter. In other * words, you can create your own class derived from TrainData and pass smart pointer to the instance * of this class into StatModel::train. * * SEE: REF: ml_intro_data */ public class TrainData { protected final long nativeObj; protected TrainData(long addr) { nativeObj = addr; } public long getNativeObjAddr() { return nativeObj; } // internal usage only public static TrainData __fromPtr__(long addr) { return new TrainData(addr); } // // C++: int cv::ml::TrainData::getLayout() // public int getLayout() { return getLayout_0(nativeObj); } // // C++: int cv::ml::TrainData::getNTrainSamples() // public int getNTrainSamples() { return getNTrainSamples_0(nativeObj); } // // C++: int cv::ml::TrainData::getNTestSamples() // public int getNTestSamples() { return getNTestSamples_0(nativeObj); } // // C++: int cv::ml::TrainData::getNSamples() // public int getNSamples() { return getNSamples_0(nativeObj); } // // C++: int cv::ml::TrainData::getNVars() // public int getNVars() { return getNVars_0(nativeObj); } // // C++: int cv::ml::TrainData::getNAllVars() // public int getNAllVars() { return getNAllVars_0(nativeObj); } // // C++: void cv::ml::TrainData::getSample(Mat varIdx, int sidx, float* buf) // public void getSample(Mat varIdx, int sidx, float buf) { getSample_0(nativeObj, varIdx.nativeObj, sidx, buf); } // // C++: Mat cv::ml::TrainData::getSamples() // public Mat getSamples() { return new Mat(getSamples_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getMissing() // public Mat getMissing() { return new Mat(getMissing_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getTrainSamples(int layout = ROW_SAMPLE, bool compressSamples = true, bool compressVars = true) // /** * Returns matrix of train samples * * @param layout The requested layout. If it's different from the initial one, the matrix is * transposed. See ml::SampleTypes. * @param compressSamples if true, the function returns only the training samples (specified by * sampleIdx) * @param compressVars if true, the function returns the shorter training samples, containing only * the active variables. * * In current implementation the function tries to avoid physical data copying and returns the * matrix stored inside TrainData (unless the transposition or compression is needed). * @return automatically generated */ public Mat getTrainSamples(int layout, boolean compressSamples, boolean compressVars) { return new Mat(getTrainSamples_0(nativeObj, layout, compressSamples, compressVars)); } /** * Returns matrix of train samples * * @param layout The requested layout. If it's different from the initial one, the matrix is * transposed. See ml::SampleTypes. * @param compressSamples if true, the function returns only the training samples (specified by * sampleIdx) * the active variables. * * In current implementation the function tries to avoid physical data copying and returns the * matrix stored inside TrainData (unless the transposition or compression is needed). * @return automatically generated */ public Mat getTrainSamples(int layout, boolean compressSamples) { return new Mat(getTrainSamples_1(nativeObj, layout, compressSamples)); } /** * Returns matrix of train samples * * @param layout The requested layout. If it's different from the initial one, the matrix is * transposed. See ml::SampleTypes. * sampleIdx) * the active variables. * * In current implementation the function tries to avoid physical data copying and returns the * matrix stored inside TrainData (unless the transposition or compression is needed). * @return automatically generated */ public Mat getTrainSamples(int layout) { return new Mat(getTrainSamples_2(nativeObj, layout)); } /** * Returns matrix of train samples * * transposed. See ml::SampleTypes. * sampleIdx) * the active variables. * * In current implementation the function tries to avoid physical data copying and returns the * matrix stored inside TrainData (unless the transposition or compression is needed). * @return automatically generated */ public Mat getTrainSamples() { return new Mat(getTrainSamples_3(nativeObj)); } // // C++: Mat cv::ml::TrainData::getTrainResponses() // /** * Returns the vector of responses * * The function returns ordered or the original categorical responses. Usually it's used in * regression algorithms. * @return automatically generated */ public Mat getTrainResponses() { return new Mat(getTrainResponses_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getTrainNormCatResponses() // /** * Returns the vector of normalized categorical responses * * The function returns vector of responses. Each response is integer from {@code 0} to `<number of * classes>-1`. The actual label value can be retrieved then from the class label vector, see * TrainData::getClassLabels. * @return automatically generated */ public Mat getTrainNormCatResponses() { return new Mat(getTrainNormCatResponses_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getTestResponses() // public Mat getTestResponses() { return new Mat(getTestResponses_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getTestNormCatResponses() // public Mat getTestNormCatResponses() { return new Mat(getTestNormCatResponses_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getResponses() // public Mat getResponses() { return new Mat(getResponses_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getNormCatResponses() // public Mat getNormCatResponses() { return new Mat(getNormCatResponses_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getSampleWeights() // public Mat getSampleWeights() { return new Mat(getSampleWeights_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getTrainSampleWeights() // public Mat getTrainSampleWeights() { return new Mat(getTrainSampleWeights_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getTestSampleWeights() // public Mat getTestSampleWeights() { return new Mat(getTestSampleWeights_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getVarIdx() // public Mat getVarIdx() { return new Mat(getVarIdx_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getVarType() // public Mat getVarType() { return new Mat(getVarType_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getVarSymbolFlags() // public Mat getVarSymbolFlags() { return new Mat(getVarSymbolFlags_0(nativeObj)); } // // C++: int cv::ml::TrainData::getResponseType() // public int getResponseType() { return getResponseType_0(nativeObj); } // // C++: Mat cv::ml::TrainData::getTrainSampleIdx() // public Mat getTrainSampleIdx() { return new Mat(getTrainSampleIdx_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getTestSampleIdx() // public Mat getTestSampleIdx() { return new Mat(getTestSampleIdx_0(nativeObj)); } // // C++: void cv::ml::TrainData::getValues(int vi, Mat sidx, float* values) // public void getValues(int vi, Mat sidx, float values) { getValues_0(nativeObj, vi, sidx.nativeObj, values); } // // C++: Mat cv::ml::TrainData::getDefaultSubstValues() // public Mat getDefaultSubstValues() { return new Mat(getDefaultSubstValues_0(nativeObj)); } // // C++: int cv::ml::TrainData::getCatCount(int vi) // public int getCatCount(int vi) { return getCatCount_0(nativeObj, vi); } // // C++: Mat cv::ml::TrainData::getClassLabels() // /** * Returns the vector of class labels * * The function returns vector of unique labels occurred in the responses. * @return automatically generated */ public Mat getClassLabels() { return new Mat(getClassLabels_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getCatOfs() // public Mat getCatOfs() { return new Mat(getCatOfs_0(nativeObj)); } // // C++: Mat cv::ml::TrainData::getCatMap() // public Mat getCatMap() { return new Mat(getCatMap_0(nativeObj)); } // // C++: void cv::ml::TrainData::setTrainTestSplit(int count, bool shuffle = true) // /** * Splits the training data into the training and test parts * SEE: TrainData::setTrainTestSplitRatio * @param count automatically generated * @param shuffle automatically generated */ public void setTrainTestSplit(int count, boolean shuffle) { setTrainTestSplit_0(nativeObj, count, shuffle); } /** * Splits the training data into the training and test parts * SEE: TrainData::setTrainTestSplitRatio * @param count automatically generated */ public void setTrainTestSplit(int count) { setTrainTestSplit_1(nativeObj, count); } // // C++: void cv::ml::TrainData::setTrainTestSplitRatio(double ratio, bool shuffle = true) // /** * Splits the training data into the training and test parts * * The function selects a subset of specified relative size and then returns it as the training * set. If the function is not called, all the data is used for training. Please, note that for * each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test * subset can be retrieved and processed as well. * SEE: TrainData::setTrainTestSplit * @param ratio automatically generated * @param shuffle automatically generated */ public void setTrainTestSplitRatio(double ratio, boolean shuffle) { setTrainTestSplitRatio_0(nativeObj, ratio, shuffle); } /** * Splits the training data into the training and test parts * * The function selects a subset of specified relative size and then returns it as the training * set. If the function is not called, all the data is used for training. Please, note that for * each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test * subset can be retrieved and processed as well. * SEE: TrainData::setTrainTestSplit * @param ratio automatically generated */ public void setTrainTestSplitRatio(double ratio) { setTrainTestSplitRatio_1(nativeObj, ratio); } // // C++: void cv::ml::TrainData::shuffleTrainTest() // public void shuffleTrainTest() { shuffleTrainTest_0(nativeObj); } // // C++: Mat cv::ml::TrainData::getTestSamples() // /** * Returns matrix of test samples * @return automatically generated */ public Mat getTestSamples() { return new Mat(getTestSamples_0(nativeObj)); } // // C++: void cv::ml::TrainData::getNames(vector_String names) // /** * Returns vector of symbolic names captured in loadFromCSV() * @param names automatically generated */ public void getNames(List<String> names) { getNames_0(nativeObj, names); } // // C++: static Mat cv::ml::TrainData::getSubVector(Mat vec, Mat idx) // /** * Extract from 1D vector elements specified by passed indexes. * @param vec input vector (supported types: CV_32S, CV_32F, CV_64F) * @param idx 1D index vector * @return automatically generated */ public static Mat getSubVector(Mat vec, Mat idx) { return new Mat(getSubVector_0(vec.nativeObj, idx.nativeObj)); } // // C++: static Mat cv::ml::TrainData::getSubMatrix(Mat matrix, Mat idx, int layout) // /** * Extract from matrix rows/cols specified by passed indexes. * @param matrix input matrix (supported types: CV_32S, CV_32F, CV_64F) * @param idx 1D index vector * @param layout specifies to extract rows (cv::ml::ROW_SAMPLES) or to extract columns (cv::ml::COL_SAMPLES) * @return automatically generated */ public static Mat getSubMatrix(Mat matrix, Mat idx, int layout) { return new Mat(getSubMatrix_0(matrix.nativeObj, idx.nativeObj, layout)); } // // C++: static Ptr_TrainData cv::ml::TrainData::create(Mat samples, int layout, Mat responses, Mat varIdx = Mat(), Mat sampleIdx = Mat(), Mat sampleWeights = Mat(), Mat varType = Mat()) // /** * Creates training data from in-memory arrays. * * @param samples matrix of samples. It should have CV_32F type. * @param layout see ml::SampleTypes. * @param responses matrix of responses. If the responses are scalar, they should be stored as a * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the * former case the responses are considered as ordered by default; in the latter case - as * categorical) * @param varIdx vector specifying which variables to use for training. It can be an integer vector * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of * active variables. * @param sampleIdx vector specifying which samples to use for training. It can be an integer * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask * of training samples. * @param sampleWeights optional vector with weights for each sample. It should have CV_32F type. * @param varType optional vector of type CV_8U and size `<number_of_variables_in_samples> + * <number_of_variables_in_responses>`, containing types of each input and output variable. See * ml::VariableTypes. * @return automatically generated */ public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx, Mat sampleWeights, Mat varType) { return TrainData.__fromPtr__(create_0(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, sampleWeights.nativeObj, varType.nativeObj)); } /** * Creates training data from in-memory arrays. * * @param samples matrix of samples. It should have CV_32F type. * @param layout see ml::SampleTypes. * @param responses matrix of responses. If the responses are scalar, they should be stored as a * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the * former case the responses are considered as ordered by default; in the latter case - as * categorical) * @param varIdx vector specifying which variables to use for training. It can be an integer vector * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of * active variables. * @param sampleIdx vector specifying which samples to use for training. It can be an integer * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask * of training samples. * @param sampleWeights optional vector with weights for each sample. It should have CV_32F type. * <number_of_variables_in_responses>`, containing types of each input and output variable. See * ml::VariableTypes. * @return automatically generated */ public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx, Mat sampleWeights) { return TrainData.__fromPtr__(create_1(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, sampleWeights.nativeObj)); } /** * Creates training data from in-memory arrays. * * @param samples matrix of samples. It should have CV_32F type. * @param layout see ml::SampleTypes. * @param responses matrix of responses. If the responses are scalar, they should be stored as a * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the * former case the responses are considered as ordered by default; in the latter case - as * categorical) * @param varIdx vector specifying which variables to use for training. It can be an integer vector * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of * active variables. * @param sampleIdx vector specifying which samples to use for training. It can be an integer * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask * of training samples. * <number_of_variables_in_responses>`, containing types of each input and output variable. See * ml::VariableTypes. * @return automatically generated */ public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx) { return TrainData.__fromPtr__(create_2(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj)); } /** * Creates training data from in-memory arrays. * * @param samples matrix of samples. It should have CV_32F type. * @param layout see ml::SampleTypes. * @param responses matrix of responses. If the responses are scalar, they should be stored as a * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the * former case the responses are considered as ordered by default; in the latter case - as * categorical) * @param varIdx vector specifying which variables to use for training. It can be an integer vector * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of * active variables. * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask * of training samples. * <number_of_variables_in_responses>`, containing types of each input and output variable. See * ml::VariableTypes. * @return automatically generated */ public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx) { return TrainData.__fromPtr__(create_3(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj)); } /** * Creates training data from in-memory arrays. * * @param samples matrix of samples. It should have CV_32F type. * @param layout see ml::SampleTypes. * @param responses matrix of responses. If the responses are scalar, they should be stored as a * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the * former case the responses are considered as ordered by default; in the latter case - as * categorical) * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of * active variables. * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask * of training samples. * <number_of_variables_in_responses>`, containing types of each input and output variable. See * ml::VariableTypes. * @return automatically generated */ public static TrainData create(Mat samples, int layout, Mat responses) { return TrainData.__fromPtr__(create_4(samples.nativeObj, layout, responses.nativeObj)); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: int cv::ml::TrainData::getLayout() private static native int getLayout_0(long nativeObj); // C++: int cv::ml::TrainData::getNTrainSamples() private static native int getNTrainSamples_0(long nativeObj); // C++: int cv::ml::TrainData::getNTestSamples() private static native int getNTestSamples_0(long nativeObj); // C++: int cv::ml::TrainData::getNSamples() private static native int getNSamples_0(long nativeObj); // C++: int cv::ml::TrainData::getNVars() private static native int getNVars_0(long nativeObj); // C++: int cv::ml::TrainData::getNAllVars() private static native int getNAllVars_0(long nativeObj); // C++: void cv::ml::TrainData::getSample(Mat varIdx, int sidx, float* buf) private static native void getSample_0(long nativeObj, long varIdx_nativeObj, int sidx, float buf); // C++: Mat cv::ml::TrainData::getSamples() private static native long getSamples_0(long nativeObj); // C++: Mat cv::ml::TrainData::getMissing() private static native long getMissing_0(long nativeObj); // C++: Mat cv::ml::TrainData::getTrainSamples(int layout = ROW_SAMPLE, bool compressSamples = true, bool compressVars = true) private static native long getTrainSamples_0(long nativeObj, int layout, boolean compressSamples, boolean compressVars); private static native long getTrainSamples_1(long nativeObj, int layout, boolean compressSamples); private static native long getTrainSamples_2(long nativeObj, int layout); private static native long getTrainSamples_3(long nativeObj); // C++: Mat cv::ml::TrainData::getTrainResponses() private static native long getTrainResponses_0(long nativeObj); // C++: Mat cv::ml::TrainData::getTrainNormCatResponses() private static native long getTrainNormCatResponses_0(long nativeObj); // C++: Mat cv::ml::TrainData::getTestResponses() private static native long getTestResponses_0(long nativeObj); // C++: Mat cv::ml::TrainData::getTestNormCatResponses() private static native long getTestNormCatResponses_0(long nativeObj); // C++: Mat cv::ml::TrainData::getResponses() private static native long getResponses_0(long nativeObj); // C++: Mat cv::ml::TrainData::getNormCatResponses() private static native long getNormCatResponses_0(long nativeObj); // C++: Mat cv::ml::TrainData::getSampleWeights() private static native long getSampleWeights_0(long nativeObj); // C++: Mat cv::ml::TrainData::getTrainSampleWeights() private static native long getTrainSampleWeights_0(long nativeObj); // C++: Mat cv::ml::TrainData::getTestSampleWeights() private static native long getTestSampleWeights_0(long nativeObj); // C++: Mat cv::ml::TrainData::getVarIdx() private static native long getVarIdx_0(long nativeObj); // C++: Mat cv::ml::TrainData::getVarType() private static native long getVarType_0(long nativeObj); // C++: Mat cv::ml::TrainData::getVarSymbolFlags() private static native long getVarSymbolFlags_0(long nativeObj); // C++: int cv::ml::TrainData::getResponseType() private static native int getResponseType_0(long nativeObj); // C++: Mat cv::ml::TrainData::getTrainSampleIdx() private static native long getTrainSampleIdx_0(long nativeObj); // C++: Mat cv::ml::TrainData::getTestSampleIdx() private static native long getTestSampleIdx_0(long nativeObj); // C++: void cv::ml::TrainData::getValues(int vi, Mat sidx, float* values) private static native void getValues_0(long nativeObj, int vi, long sidx_nativeObj, float values); // C++: Mat cv::ml::TrainData::getDefaultSubstValues() private static native long getDefaultSubstValues_0(long nativeObj); // C++: int cv::ml::TrainData::getCatCount(int vi) private static native int getCatCount_0(long nativeObj, int vi); // C++: Mat cv::ml::TrainData::getClassLabels() private static native long getClassLabels_0(long nativeObj); // C++: Mat cv::ml::TrainData::getCatOfs() private static native long getCatOfs_0(long nativeObj); // C++: Mat cv::ml::TrainData::getCatMap() private static native long getCatMap_0(long nativeObj); // C++: void cv::ml::TrainData::setTrainTestSplit(int count, bool shuffle = true) private static native void setTrainTestSplit_0(long nativeObj, int count, boolean shuffle); private static native void setTrainTestSplit_1(long nativeObj, int count); // C++: void cv::ml::TrainData::setTrainTestSplitRatio(double ratio, bool shuffle = true) private static native void setTrainTestSplitRatio_0(long nativeObj, double ratio, boolean shuffle); private static native void setTrainTestSplitRatio_1(long nativeObj, double ratio); // C++: void cv::ml::TrainData::shuffleTrainTest() private static native void shuffleTrainTest_0(long nativeObj); // C++: Mat cv::ml::TrainData::getTestSamples() private static native long getTestSamples_0(long nativeObj); // C++: void cv::ml::TrainData::getNames(vector_String names) private static native void getNames_0(long nativeObj, List<String> names); // C++: static Mat cv::ml::TrainData::getSubVector(Mat vec, Mat idx) private static native long getSubVector_0(long vec_nativeObj, long idx_nativeObj); // C++: static Mat cv::ml::TrainData::getSubMatrix(Mat matrix, Mat idx, int layout) private static native long getSubMatrix_0(long matrix_nativeObj, long idx_nativeObj, int layout); // C++: static Ptr_TrainData cv::ml::TrainData::create(Mat samples, int layout, Mat responses, Mat varIdx = Mat(), Mat sampleIdx = Mat(), Mat sampleWeights = Mat(), Mat varType = Mat()) private static native long create_0(long samples_nativeObj, int layout, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long sampleWeights_nativeObj, long varType_nativeObj); private static native long create_1(long samples_nativeObj, int layout, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long sampleWeights_nativeObj); private static native long create_2(long samples_nativeObj, int layout, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj); private static native long create_3(long samples_nativeObj, int layout, long responses_nativeObj, long varIdx_nativeObj); private static native long create_4(long samples_nativeObj, int layout, long responses_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }